2,785 research outputs found
Relating transverse structure of various parton distributions
We present the results of T-even TMDs in a light front quark-diquark model of
nucleons with the wave functions constructed from the soft-wall AdS/QCD
prediction. The relations amongst TMDs are discussed. The dependence
of the TMDs are compared with the -dependence of the GPDs. AdS/QCD wave
function provides an explanation behind the approximate and
factorization observed in lattice TMD calculations.Comment: 11 pages, 8 figures, modified extensively, added new results and
discusssion
Controlling Metamaterial Resonances with Light
We investigate the use of coherent optical fields as a means of dynamically
controlling the resonant behaviour of a variety of composite metamaterials,
wherein the metamaterial structures are embedded in a dispersive dielectric
medium. Control and switching is implemented by coherently driving the resonant
permittivity of the embedding medium by applied optical radiation. The effect
of embedding Split ring resonators (SRR) in a frequency- dispersive medium with
Lorentz-like dispersion or with dispersion engineered by electromagnetic
induced transparency (EIT), is manifested in the splitting of the negative
permeability band, the modified (frequency-dependent) filling fractions and
dissipation factors. The modified material parameters are strongly linked to
the resonant frequencies of the medium, while for an embedding medium
exhibiting EIT, also to the strength and detuning of the control field. The
robustness of control against the deleterious influence of dissipation
associated with the metallic structures as well as the inhomogeneous broadening
due to structural imperfections is demonstrated. Studies on plasmonic
metamaterials that consist of metallic nanorods arranged in loops and exhibit a
collective magnetic response at optical frequencies are presented. Control and
switching in this class of plasmonic nanorod metamaterials is shown to be
possible, for example, by embedding these arrays in a Raman active liquid like
CS and utilizing the Inverse Raman Effect.Comment: 9 pages, 9 figure
Quantum fluctuation induced ordered phase in the Blume-Capel model
We consider the Blume-Capel model with the quantum tunneling between the
excited states. We find a magnetically ordered phase transition induced by
quantum fluctuation in a model. The model has no phase transition in the
corresponding classical case. Usually, quantum fluctuation breaks ordered phase
as in the case of the transverse field Ising model. However, in present case,
an ordered phase is induced by quantum fluctuation. Moreover, we find a phase
transition between a quantum paramagnetic phase and a classical diamagnetic
phase at zero temperature. We study the properties of the phase transition by
using a mean field approximation (MFA), and then, by a quantum Monte Carlo
method to confirm the result of the MFA.Comment: 7 pages, 6 figures, corrected some typo
Influence of the structural modulations and the Chain-ladder interaction in the compounds
We studied the effects of the incommensurate structural modulations on the
ladder subsystem of the family of compounds
using ab-initio explicitly-correlated calculations. From these calculations we
derived model as a function of the fourth crystallographic coordinate
describing the incommensurate modulations. It was found that in the
highly calcium-doped system, the on-site orbital energies are strongly
modulated along the ladder legs. On the contrary the two sites of the ladder
rungs are iso-energetic and the holes are thus expected to be delocalized on
the rungs. Chain-ladder interactions were also evaluated and found to be very
negligible. The ladder superconductivity model for these systems is discussed
in the light of the present results.Comment: 8 octobre 200
Augmented space recursion for partially disordered systems
Off-stoichiometric alloys exhibit partial disorder, in the sense that only
some of the sublattices of the stoichiometric ordered alloy become disordered.
This paper puts forward a generalization of the augmented space recursion (ASR)
(introduced earlier by one of us (Mookerjee et al 1997(*))) for systems with
many atoms per unit cell. In order to justify the convergence properties of ASR
we have studied the convergence of various moments of local density of states
and other physical quantities like Fermi energy and band energy. We have also
looked at the convergence of the magnetic moment of Ni, which is very sensitive
to numerical approximations towards the k-space value 0.6 with the
number of recursion steps prior to termination.Comment: Latex 2e, 21 Pages, 13 Figures, iopb style file attache
Plausible home stars of the interstellar object 'Oumuamua found in Gaia DR2
The first detected interstellar object 'Oumuamua that passed within 0.25au of
the Sun on 2017 September 9 was presumably ejected from a stellar system. We
use its newly determined non-Keplerian trajectory together with the
reconstructed Galactic orbits of 7 million stars from Gaia DR2 to identify past
close encounters. Such an "encounter" could reveal the home system from which
'Oumuamua was ejected. The closest encounter, at 0.60pc (0.53-0.67pc, 90%
confidence interval), was with the M2.5 dwarf HIP 3757 at a relative velocity
of 24.7km/s, 1Myr ago. A more distant encounter (1.6pc) but with a lower
encounter (ejection) velocity of 10.7km/s was with the G5 dwarf HD 292249,
3.8Myr ago. Two more stars have encounter distances and velocities intermediate
to these. The encounter parameters are similar across six different
non-gravitational trajectories for 'Oumuamua. Ejection of 'Oumuamua by
scattering from a giant planet in one of the systems is plausible, but requires
a rather unlikely configuration to achieve the high velocities found. A binary
star system is more likely to produce the observed velocities. None of the four
home candidates have published exoplanets or are known to be binaries. Given
that the 7 million stars in Gaia DR2 with 6D phase space information is just a
small fraction of all stars for which we can eventually reconstruct orbits, it
is a priori unlikely that our current search would find 'Oumuamua's home star
system. As 'Oumuamua is expected to pass within 1pc of about 20 stars and brown
dwarfs every Myr, the plausibility of a home system depends also on an
appropriate (low) encounter velocity.Comment: Accepted to The Astronomical Journa
Duality for Exotic Bialgebras
In the classification of Hietarinta, three triangular
-matrices lead, via the FRT formalism, to matrix bialgebras which are not
deformations of the trivial one. In this paper, we find the bialgebras which
are in duality with these three exotic matrix bialgebras. We note that the
duality of FRT is not sufficient for the construction of the bialgebras
in duality. We find also the quantum planes corresponding to these bialgebras
both by the Wess-Zumino R-matrix method and by Manin's method.Comment: 25 pages, LaTeX2e, using packages: cite, amsfonts, amsmath, subeq
- …