10,615 research outputs found

    Coupling nanomechanical cantilevers to dipolar molecules

    Full text link
    We investigate the coupling of a nanomechanical oscillator in the quantum regime with molecular (electric) dipoles. We find theoretically that the cantilever can produce single-mode squeezing of the center-of-mass motion of an isolated trapped molecule and two-mode squeezing of the phonons of an array of molecules. This work opens up the possibility of manipulating dipolar crystals, which have been recently proposed as quantum memory, and more generally, is indicative of the promise of nanoscale cantilevers for the quantum detection and control of atomic and molecular systems.Comment: 3 figures, 4page

    Nonperturbative solution of the Nonconfining Schwinger Model with a generalized regularization

    Full text link
    Nonconfining Schwinger Model [AR] is studied with a one parameter class of kinetic energy like regularization. It may be thought of as a generalization over the regularization considered in [AR]. Phasespace structure has been determined in this new situation. The mass of the gauge boson acquires a generalized expression with the bare coupling constant and the parameters involved in the regularization. Deconfinement scenario has become transparent at the quark-antiquark potential level.Comment: 13 pages latex fil

    CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps

    Full text link
    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find that only modes up to a maximum multipole of l_max ~ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.Comment: 14 pages, 14 figures, to be submitted to Ap

    Percolation Transition in the Heterogeneous Vortex State in NbSe2

    Full text link
    A percolation transition in the vortex state of a superconducting 2H-NbSe2 crystal is observed in the regime where vortices form a heterogeneous phase consisting of ordered and disordered domains. The transition is signaled by a sharp increase in critical current that occurs when the volume fraction of disordered domains, obtained from pulsed measurements of the current-voltage characteristics, reaches the value Pc= 0.26. Measurements on different vortex states show that while the temperature of the transition depends on history and measurement speed, the value of Pc and the critical exponent characterizing the approach to it, r =1.97 ±\pm 0.66, are universal

    New and old N=8 superconformal field theories in three dimensions

    Full text link
    We show that an infinite family of N=6 d=3 superconformal Chern-Simons-matter theories has hidden N=8 superconformal symmetry and hidden parity on the quantum level. This family of theories is different from the one found by Aharony, Bergman, Jafferis and Maldacena, as well as from the theories constructed by Bagger and Lambert, and Gustavsson. We also test several conjectural dualities between BLG theories and ABJ theories by comparing superconformal indices of these theories.Comment: 16 pages, late

    Chandra studies of the globular cluster 47 Tucanae: A deeper X-ray source catalogue, five new X-ray counterparts to millisecond radio pulsars, and new constraints to r-mode instability window

    Get PDF
    We combined Chandra ACIS observations of the globular cluster 47 Tucanae (hereafter, 47 Tuc) from 2000, 2002, and 2014-15 to create a deeper X-ray source list, and study some of the faint radio millisecond pulsars (MSPs) present in this cluster. We have detected 370 X-ray sources within the half-mass radius (2'.79) of the cluster, 81 of which are newly identified, by including new data and using improved source detection techniques. The majority of the newly identified sources are in the crowded core region, indicating cluster membership. We associate five of the new X-ray sources with chromospherically active BY Dra or W UMa variables identified by Albrow et al. (2001). We present alternative positions derived from two methods, centroiding and image reconstruction, for faint, crowded sources. We are able to extract X-ray spectra of the recently discovered MSPs 47 Tuc aa, 47 Tuc ab, the newly timed MSP 47 Tuc Z, and the newly resolved MSPs 47 Tuc S and 47 Tuc F. Generally, they are well fit by black body or neutron star atmosphere models, with temperatures, luminosities and emitting radii similar to those of other known MSPs in 47 Tuc, though 47 Tuc aa and 47 Tuc ab reach lower X-ray luminosities. We limit X-ray emission from the full surface of the rapidly spinning (542 Hz) MSP 47 Tuc aa, and use this limit to put an upper bound for amplitude of r-mode oscillations in this pulsar as α<2.5×109\alpha<2.5\times 10^{-9} and constrain the shape of the r-mode instability window.Comment: 17 pages, 11 figures, 6 tables, Accepted for publication in MNRA

    Semiclassical Strings Probing NS5 Brane Wrapped on S^5

    Full text link
    We study little string theory on R^1 x S^5, defined by a theory which lives on type IIA N NS5 branes wrapped on S^5, using its supergravity dual. In particular we study semiclassical rotating closed strings in this background. We also consider Penrose limit of this background that leads to a plane wave on which string theory is exactly solvable.Comment: 14 pages, Latex, v2: typos corrected, Refs. added, v3: typos correcte

    Superconformal Indices for Orbifold Chern-Simons Theories

    Get PDF
    We calculate the superconformal indices of recently discovered three-dimensional N=4,5 Chern-Simons-matter theories and compare them with the corresponding indices of supergravity on AdS4 times orbifolds of S7. We find perfect agreement in the large N and large k limit, provided that the twisted sector contributions at the fixed loci of the orbifolds are properly taken into account. We also discuss the index for the so-called "dual ABJM" proposal.Comment: 27 pages, 1 figure; v2. reference added, minor correction

    Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli

    Full text link
    In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2
    corecore