155 research outputs found

    A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics

    Get PDF
    Despite the growing threat of antimicrobial resistance, pharmaceutical and biotechnology firms are reluctant to develop novel antibiotics because of a host of market failures. This problem is complicated by public health goals that demand antibiotic conservation and equitable patient access. Thus, an innovative incentive strategy is needed to encourage sustainable investment in antibiotics. This systematic review consolidates, classifies and critically assesses a total of 47 proposed incentives. Given the large number of possible strategies, a decision framework is presented to assist with the selection of incentives. This framework focuses on addressing market failures that result in limited investment, public health priorities regarding antibiotic stewardship and patient access, and implementation constraints and operational realities. The flexible nature of this framework allows policy makers to tailor an antibiotic incentive package that suits a country’s health system structure and needs

    Insight into PreImplantation Factor (PIF*) Mechanism for Embryo Protection and Development: Target Oxidative Stress and Protein Misfolding (PDI and HSP) through Essential RIPK Binding Site

    No full text
    <div><p>Background</p><p>Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF) administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised.</p><p>Methods</p><p>FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control). Murine embryo (d10) lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS). <i>In silico</i> evaluation examined binding of PIF to critical targets, using mutation analysis.</p><p>Results</p><p>PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like) containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90), co-chaperone, BAG-3. Remarkably, PIF targets a common RIPK site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented.</p><p>Conclusion</p><p>Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF-affinity-column is a novel utilitarian method for small molecule targets direct identification. Data reveals and completes the understanding of mechanisms involved in PIF-induced autotrophic and protective effects on the embryo.</p></div
    • …
    corecore