217 research outputs found
Antiphospholipid Syndrome Risk Evaluation
The antiphospholipid syndrome is an acquired autoimmune disorder
produced by high titers of antiphospholipid antibodies that cause both arterial
and veins thrombosis as well as pregnancy-related complications and morbidity,
as clinical manifestations. This autoimmune hypercoagulable state, often associated
with coronary artery disease and recurrent Acute Myocardium Infraction,
has severe consequences for the patients, being one of the main causes of
thrombotic disorders and death. Therefore, it is extremely important to be preventive;
being aware of how probable is to have that kind of syndrome. Despite
the updated of the APS classification published as Sydney criteria, diagnosis of
this syndrome remains challenging. Further research on clinically relevant antibodies
and standardization of their quantification are required to improve clinical
risk assessment in APS. This work will focus on the development of a diagnosis
support system to antiphospholipid syndrome, built under a formal
framework based on Logic Programming, in terms of its knowledge representation
and reasoning procedures, complemented with an approach to computing
grounded on Artificial Neural Networks.
The proposed model allowed to improve the diagnosis, classifying properly the
patients that really presented this pathology (sensitivity about 92%) as well as
classifying the absence of APS (specificity ranging from 89% to 94%)
Dynamics of localized structures in vector waves
Dynamical properties of topological defects in a twodimensional complex
vector field are considered. These objects naturally arise in the study of
polarized transverse light waves. Dynamics is modeled by a Vector Complex
Ginzburg-Landau Equation with parameter values appropriate for linearly
polarized laser emission. Creation and annihilation processes, and
selforganization of defects in lattice structures, are described. We find
"glassy" configurations dominated by vectorial defects and a melting process
associated to topological-charge unbinding.Comment: 4 pages, 5 figures included in the text. To appear in Phys. Rev.
Lett. (2000). Related material at http://www.imedea.uib.es/Nonlinear and
http://www.imedea.uib.es/Photonics . In this new version, Fig. 3 has been
replaced by a better on
Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method
This paper discusses hadron energy reconstruction for the ATLAS barrel
prototype combined calorimeter (consisting of a lead-liquid argon
electromagnetic part and an iron-scintillator hadronic part) in the framework
of the non-parametrical method. The non-parametrical method utilizes only the
known ratios and the electron calibration constants and does not require
the determination of any parameters by a minimization technique. Thus, this
technique lends itself to an easy use in a first level trigger. The
reconstructed mean values of the hadron energies are within of the
true values and the fractional energy resolution is . The value of the ratio
obtained for the electromagnetic compartment of the combined calorimeter is
and agrees with the prediction that for this
electromagnetic calorimeter. Results of a study of the longitudinal hadronic
shower development are also presented. The data have been taken in the H8 beam
line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM
Antibodies Against β2-Glycoprotein I Complexed With an Oxidised Lipoprotein Relate to Intima Thickening of Carotid Arteries in Primary Antiphospholipid Syndrome
To explore whether antibodies against β2-glycoprotein I (β2GPI) complexed to 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) and to oxidised low-density lipoproteins (oxLDL) relate to paraoxonase activity (PONa) and/or intima media thickness (IMT) of carotid arteries in primary antiphospholipid syndrome (PAPS). As many as 29 thrombotic patients with PAPS, 10 subjects with idiopathic antiphospholipid antibodies (aPL) without thrombosis, 17 thrombotic patients with inherited thrombophilia and 23 healthy controls were investigated. The following were measured in all participants: β2GPI−oxLDL complexes, IgG anti-β2GPI−oxLig-1, IgG anti-β2GPI−oxLDL antibodies (ELISA), PONa, (para-nitrophenol method), IMT of common carotid (CC) artery, carotid bifurcation (B), internal carotid (IC) by high resolution sonography. β2GPI−oxLDL complex was highest in the control group (p < 0.01), whereas, IgG anti-β2GPI−oxLig1 and IgG anti-β2GPI−oxLDL were highest in PAPS (p < 0.0001). In healthy controls, β2GPI−oxLDL complexes positively correlated to IMT of the IC (p = 0.007) and negatively to PONa after correction for age (p < 0.03). PONa inversely correlated with age (p = 0.008). In PAPS, IgG anti-2GPI−oxLig-1 independently predicted PONa (p = 0.02) and IMT of B (p = 0.003), CC, (p = 0.03) and of IC (p = 0.04). In PAPS, PONa inversely correlated to the IMT of B, CC and IC (p = 0.01, 0.02 and 0.003, respectively). IgG anti-2GPI−oxLig-1 may be involved in PAPS related atherogenesis via decreased PON activity
Crackling Noise
Crackling noise arises when a system responds to changing external conditions
through discrete, impulsive events spanning a broad range of sizes. A wide
variety of physical systems exhibiting crackling noise have been studied, from
earthquakes on faults to paper crumpling. Because these systems exhibit regular
behavior over many decades of sizes, their behavior is likely independent of
microscopic and macroscopic details, and progress can be made by the use of
very simple models. The fact that simple models and real systems can share the
same behavior on a wide range of scales is called universality. We illustrate
these ideas using results for our model of crackling noise in magnets,
explaining the use of the renormalization group and scaling collapses. This
field is still developing: we describe a number of continuing challenges
Beta-Carotene Reduces Body Adiposity of Mice via BCMO1
Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1-/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocyte
Antibodies to Serine Proteases in the Antiphospholipid Syndrome
It is generally accepted that the major autoantigen for antiphospholipid antibodies (aPL) in the antiphospholipid syndrome (APS) is β2-glycoprotein I (β2GPI). However, a recent study has revealed that some aPL bind to certain conformational epitope(s) on β2GPI shared by the homologous enzymatic domains of several serine proteases involved in hemostasis and fibrinolysis. Importantly, some serine protease–reactive aPL correspondingly hinder anticoagulant regulation and resolution of clots. These results extend several early findings of aPL binding to other coagulation factors and provide a new perspective about some aPL in terms of binding specificities and related functional properties in promoting thrombosis. Moreover, a recent immunological and pathological study of a panel of human IgG monoclonal aPL showed that aPL with strong binding to thrombin promote in vivo venous thrombosis and leukocyte adherence, suggesting that aPL reactivity with thrombin may be a good predictor for pathogenic potentials of aPL
- …