20 research outputs found
Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum
Key message In plants, phosphorylated MAPKs display
constitutive nuclear localization; however, not all
studied plant species show co-localization of activated
MAPKs to mitotic microtubules.
Abstract The mitogen-activated protein kinase (MAPK)
signaling pathway is involved not only in the cellular
response to biotic and abiotic stress but also in the regulation
of cell cycle and plant development. The role of
MAPKs in the formation of a mitotic spindle has been
widely studied and the MAPK signaling pathway was
found to be indispensable for the unperturbed course of cell
division. Here we show cellular localization of activated
MAPKs (dually phosphorylated at their TXY motifs) in
both interphase and mitotic root meristem cells of Lupinus
luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization
of activated MAPKs has been found in all species. Colocalization
of these kinases to mitotic microtubules was
most evident in L. esculentum, while only about 50 % of
mitotic cells in the root meristems of P. sativum and V.
faba displayed activated MAPKs localized to microtubules
during mitosis. Unexpectedly, no evident immunofluorescence
signals at spindle microtubules and phragmoplast
were noted in L. luteus. Considering immunocytochemical
analyses and studies on the impact of FR180204 (an
inhibitor of animal ERK1/2) on mitotic cells, we hypothesize
that MAPKs may not play prominent role in the
regulation of microtubule dynamics in all plant species
The use of visual and automatized behavioral markers to assess methodologies: a study case on PIT-tagging in the Alpine newt
peer reviewedBiomarkers are now widely used as tools in various research fields to assess individual integrity. The recent advances in quantification methods of behavioral patterns, such as computerized video-tracking procedures, make them valuable biomarkers. However, the corollary of these novelties is that they remain relatively unknown and unused. In this study, we show that such tools can assess the validity of research methods, such as individual recognition. To demonstrate this we employed as a model a marking method (Passive Integrate Transponders: PIT-tagging) widely used in amphibians. Both detailed visual observations and video-tracking methods were complementary in highlighting components at different behavioral scales: locomotion, feeding, and breeding. We illustrate the scientific and ethical adequacy of the targeted marking method but also suggest that more studies should integrate behavioral analyses. Such biomarkers are a powerful tool to assess conservation concerns when other techniques cannot detect detrimental effects
Multiscale imaging of plant development by light-sheet fluorescence microscopy.
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights
Advanced Microscopy Reveals Complex Developmental and Subcellular Localization Patterns of ANNEXIN 1 in Arabidopsis.
Annexin 1 (ANN1) is the most abundant member of the evolutionary conserved multigene protein superfamily of annexins in plants. Generally, annexins participate in diverse cellular processes, such as cell growth, differentiation, vesicle trafficking, and stress responses. The expression of annexins is developmentally regulated, and it is sensitive to the external environment. ANN1 is expressed in almost all Arabidopsis tissues, while the most abundant is in the root, root hairs, and in the hypocotyl epidermal cells. Annexins were also occasionally proposed to associate with cytoskeleton and vesicles, but they were never developmentally localized at the subcellular level in diverse plant tissues and organs. Using advanced light-sheet fluorescence microscopy (LSFM), we followed the developmental and subcellular localization of GFP-tagged ANN1 in post-embryonic Arabidopsis organs. By contrast to conventional microscopy, LSFM allowed long-term imaging of ANN1-GFP in Arabidopsis plants at near-environmental conditions without affecting plant viability. We studied developmental regulation of ANN1-GFP expression and localization in growing Arabidopsis roots: strong accumulation was found in the root cap and epidermal cells (preferentially in elongating trichoblasts), but it was depleted in dividing cells localized in deeper layers of the root meristem. During root hair development, ANN1-GFP accumulated at the tips of emerging and growing root hairs, which was accompanied by decreased abundance in the trichoblasts. In aerial plant parts, ANN1-GFP was localized mainly in the cortical cytoplasm of trichomes and epidermal cells of hypocotyls, cotyledons, true leaves, and their petioles. At the subcellular level, ANN1-GFP was enriched at the plasma membrane (PM) and vesicles of non-dividing cells and in mitotic and cytokinetic microtubular arrays of dividing cells. Additionally, an independent immunolocalization method confirmed ANN1-GFP association with mitotic and cytokinetic microtubules (PPBs and phragmoplasts) in dividing cells of the lateral root cap. Lattice LSFM revealed subcellular accumulation of ANN1-GFP around the nuclear envelope of elongating trichoblasts. Massive relocation and accumulation of ANN1-GFP at the PM and in Hechtian strands and reticulum in plasmolyzed cells suggest a possible osmoprotective role of ANN1-GFP during plasmolysis/deplasmolysis cycle. This study shows complex developmental and subcellular localization patterns of ANN1 in living Arabidopsis plants
Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins
Abstract Background In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures. Results Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays. Conclusions 3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins