91 research outputs found

    Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA-mediated silencing of a neuronal NO synthase gene

    Get PDF
    We have used double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) to disrupt neuronal nitric oxide (NO) synthase (nNOS) gene function in the snail Lymnaea stagnalis and have detected a specific behavioral phenotype. The injection of whole animals with synthetic dsRNA molecules targeted to the nNOS-encoding mRNA reduces feeding behavior in vivo and fictive feeding in vitro and interferes with NO synthesis by the CNS. By showing that synthetic dsRNA targeted to the nNOS mRNA causes a significant and long-lasting reduction in the levels of Lym-nNOS mRNA, we verify that specific RNAi has occurred. Importantly, our results establish that the expression of nNOS gene is essential for normal feeding behavior. They also show that dsRNA can be used in the investigation of functional gene expression in the context of whole animal behavior, regardless of the availability of targeted mutation technologies

    Industrial synthesis and characterization of nanophotocatalysts materials: titania

    Get PDF
    Despite the recent synthesis and identification of a diverse set of new nanophotocatalysts that has exploded recently, titanium dioxide (TiO2) remains among the most promising photocatalysts because it is inexpensive, non-corrosive, environmentally friendly, and stable under a wide range of conditions. TiO2 has shown excellent promise for solar cell applications and for remediation of chemical pollutants and toxins. Over the past few decades, there has been a tremendous development of nanophotocatalysts for a variety of industrial applications (i.e. for water purification and reuse, disinfection of water matrices, air purification, deodorization, sterilization of soils). This paper details traditional and new industrial routes for the preparation of nanophotocatalysts and the characterization techniques used to understand the physical chemical properties of them, like surface area, ζ potential, crystal size, and phase crystallographic, morphology, and optical transparency. Finally we present some applications of the industrial nanophotocatalysts

    Chapter Green Nanotechnology: Development of Nanomaterials for Environmental and Energy Applications

    Get PDF
    This book chapter discusses the syntheses of various nanomaterials, for green nanotechnology applications in detail. Special attention is given to the development of emerging areas, such as environmental as well as energy materials. Various approaches for preparing nanostructured photocatalysts, such as titanium dioxide, zinc oxide, iron oxide, and metal sulfides, different conventional methods and novel methods, including sol-gel methods, hydrothermal methods, microwave-assisted methods and sonochemical methods are introduced. The use of nanomaterials as photocatalysts, supporting materials for solar cells, and disinfectants is reported for environmental remediation and energy applications. Advanced applications of nanomaterials for water detoxification, air purification, and the inactivation of pathogenic microorganisms in water as well as dye-sensitized solar cells is also discussed. The enhancement of selectivity of photocatalysis, especially TiO2 systems, for the destruction of target contaminants in water is comprehensively presented. Finally, the role of reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion radical (O2•-), singlet oxygen (1O2) and hydrogen peroxide (H2O2), in semiconductor photocatalysis is introduced and various experimental techniques to detect ROS are also discussed

    Practical detection of a definitive biomarker panel for Alzheimer's disease: comparisons between matched plasma and cerebrospinal fluid

    Get PDF
    Previous mass spectrometry analysis of cerebrospinal fluid (CSF) has allowed the identification of a panel of molecular markers that are associated with Alzheimer’s disease (AD). The panel comprises Amyloid beta, Apolipoprotein E, Fibrinogen alpha chain precursor, Keratin type I cytoskeletal 9, Serum albumin precursor, SPARC-like 1 protein and Tetranectin. Here we report the development and implementation of immunoassays to measure the abundance and diagnostic capacity of these putative biomarkers in matched lumbar CSF and blood plasma samples taken in life from individuals confirmed at post-mortem as suffering from AD (n=10) and from screened ‘cognitively healthy’ subjects (n=18). The inflammatory components of Alzheimer’s disease were also investigated. Employment of supervised learning techniques permitted examination of the interrelated expression patterns of the putative biomarkers and identified inflammatory components, resulting in biomarker panels with a diagnostic accuracy of 87.5% and 86.7% for the plasma and CSF datasets respectively. This is extremely important as it offers an ideal high-throughput and relatively inexpensive population screening approach. It appears possible to determine the presence or absence of AD based on our biomarker panel and it seems likely that a cheap and rapid blood test for AD is feasible

    Practical detection of a definitive biomarker panel for Alzheimer's disease: comparisons between matched plasma and cerebrospinal fluid

    Get PDF
    Previous mass spectrometry analysis of cerebrospinal fluid (CSF) has allowed the identification of a panel of molecular markers that are associated with Alzheimer’s disease (AD). The panel comprises Amyloid beta, Apolipoprotein E, Fibrinogen alpha chain precursor, Keratin type I cytoskeletal 9, Serum albumin precursor, SPARC-like 1 protein and Tetranectin. Here we report the development and implementation of immunoassays to measure the abundance and diagnostic capacity of these putative biomarkers in matched lumbar CSF and blood plasma samples taken in life from individuals confirmed at post-mortem as suffering from AD (n=10) and from screened ‘cognitively healthy’ subjects (n=18). The inflammatory components of Alzheimer’s disease were also investigated. Employment of supervised learning techniques permitted examination of the interrelated expression patterns of the putative biomarkers and identified inflammatory components, resulting in biomarker panels with a diagnostic accuracy of 87.5% and 86.7% for the plasma and CSF datasets respectively. This is extremely important as it offers an ideal high-throughput and relatively inexpensive population screening approach. It appears possible to determine the presence or absence of AD based on our biomarker panel and it seems likely that a cheap and rapid blood test for AD is feasible

    A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications

    Get PDF
    Development of visible light active (VLA) titania photocatalysts Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO 2) semiconductor mate-rials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applica-tions. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 struc-ture, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photo-electrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bac-terial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted

    New Insights into the Mechanism of Visible Light Photocatalysis

    Get PDF
    ABSTRACT: In recent years, the area of developing visible-lightactive photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron− hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
    corecore