15 research outputs found

    News Consumption and Anti-Western Narratives in Russia:A Case Study of University Students

    Get PDF
    This essay investigates the relationship between habits of news consumption and geographical imaginations in Russia. It uses results from a survey of students at a Moscow university to demonstrate an association between the news sources used by respondents and their acceptance of the Russian authorities’ narrative about the West. Students who used at least one state-aligned news source were inclined to express greater agreement with the official (negative) narrative about the West than students who did not use any state-aligned news sources. However, some of the Russian authorities’ anti-Western claims resonated strongly even amongst the non-users of state-aligned sources

    Native American Children and Their Reports of Hope: Construct Validation of the Children's Hope Scale

    Get PDF
    Child reports of hope continue to be utilized as predictors of positive adjustment; however, the utilization of the hope construct has not been assessed within the culturally diverse Native American child group. The present study investigated the applicability of the Hope theory among 96 Native American children in the Midwest. Measures included the Children’s Hope Scale and a Hope Interview. Native American children in the current sample appear to conceptualize hope as a way to reach goals as did the children in the normative sample. Results from the factor analysis demonstrate that the factor structure found in the current study was similar to the factor structure found in the standardization sample. Because of the similar Hope theory conceptualization and factor structure, interventions focused on the positive psychology construct of hope may be applicable within a Native American child population

    Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum

    Get PDF
    latitudes, with sea surface temperatures at some localities exceeding the 35 ∘C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new record of the PETM from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEXH86-based sea surface temperatures (SSTs) averaging ∌37.8 ∘C, an increase in terrestrial input and surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from Mexico, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest with a remarkably high abundance of fungal spores, indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived

    Rock fluidization during peak-ring formation of large impact structures

    Get PDF
    Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting
    corecore