18,304 research outputs found

    Coronal Line Emission from NLS1s

    Get PDF
    We discuss the optical coronal line spectra observed for a sample of 19 Narrow-Line Seyfert 1 galaxies. We find no correlation between the coronal line strength and the soft X-ray power-law index derived from ROSAT PSPC data. There is a trend for broader coronal lines to have larger equivalent widths. In addition, a strong trend is found between line width and velocity relative to the NLR. This trend is interpreted in terms of a decelerating outflow, originating close to the nucleus.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Strongly correlated fermions on a kagome lattice

    Full text link
    We study a model of strongly correlated spinless fermions on a kagome lattice at 1/3 filling, with interactions described by an extended Hubbard Hamiltonian. An effective Hamiltonian in the desired strong correlation regime is derived, from which the spectral functions are calculated by means of exact diagonalization techniques. We present our numerical results with a view to discussion of possible signatures of confinement/deconfinement of fractional charges.Comment: 10 pages, 10 figure

    Dynamics of the Lyman alpha and C IV emitting gas in 3C 273

    Full text link
    In this paper we study the variability properties of the Lyman alpha and C IV emission lines in 3C273 using archival IUE observations. Our data show for the first time the existence of variability on time scales of several years. We study the spatial distribution and the velocity field of the emitting gas by performing detailed analyses on the line variability using correlations, 1D and 2D response functions, and principal component analysis. In both lines we find evidence for two components, one which has the dynamic properties of gas in Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and one which is characterized by high, blue-shifted velocities at large lag. There is no indication of the presence of optically thick emission medium neither in the Lya, nor in the Civ response functions. The component characterized by blue-shifted velocities, which is comparatively much stronger in Civ than in Lya, is more or less compatible with being the result of gas falling towards the central black hole with free-fall acceleration. We propose however that the line emission at high, blue-shifted velocities is better explained in terms of entrainment of gas clouds by the jet. This gas is therefore probably collisionally excited as a result of heating due to the intense infrared radiation from the jet, which would explain the strength of this component in Civ relative to Lya. This phenomenon might be a signature of disk-jet interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste

    Spectral Properties From Lyman-alpha to H-alpha For An Essentially Complete Sample of Quasars I: Data

    Full text link
    We have obtained quasi-simultaneous ultraviolet-optical spectra for 22 out of 23 quasars in the complete PG-X-ray sample with redshift, z<0.4, and M_B<-23. The spectra cover rest-frame wavelengths from at least Lyman-alpha to H-alpha. Here we provide a detailed description of the data, including careful spectrophotometry and redshift determination. We also present direct measurements of the continua, strong emission lines and features, including Lyman-alpha, SiIV+OIV], CIV, CIII], SiIII], MgII, H-beta, [OIII], He5876+NaI5890,5896, H-alpha, and blended iron emission in the UV and optical. The widths, asymmetries and velocity shifts of profiles of strong emission lines show that CIV and Lyman-alpha are very different from H-beta and H-alpha. This suggests that the motion of the broad line region is related to the ionization structure, but the data appears not agree with the radially stratified ionization structure supported by reverberation mapping studies, and therefore suggest that outflows contribute additional velocity components to the broad emission line profiles.Comment: 42 pages, 10 figures, 13 tables. Accepted by AJ. Supplemental figures not included. Full version available at http://physics.uwyo.edu/~shang/pgxpaper/ShangPaper.pd

    Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP

    Get PDF
    Room temperature lasing from optically pumped single defects in a two-dimensional (2-D) photonic bandgap (PBG) crystal is demonstrated. The high-Q optical microcavities are formed by etching a triangular array of air holes into a half-wavelength thick multiquantum-well waveguide. Defects in the 2-D photonic crystal are used to support highly localized optical modes with volumes ranging from 2 to 3 (lambda/2n)(3). Lithographic tuning of the air hole radius and the lattice spacing are used to match the cavity wavelength to the quantum-well gain peak, as well as to increase the cavity Q. The defect lasers were pumped with 10-30 ns pulses of 0.4-1% duty cycle. The threshold pump power was 1.5 mW (approximate to 500 μW absorbed)

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Antiphase dynamics in a multimode semiconductor laser with optical injection

    Get PDF
    A detailed experimental study of antiphase dynamics in a two-mode semiconductor laser with optical injection is presented. The device is a specially designed Fabry-Perot laser that supports two primary modes with a THz frequency spacing. Injection in one of the primary modes of the device leads to a rich variety of single and two-mode dynamical scenarios, which are reproduced with remarkable accuracy by a four dimensional rate equation model. Numerical bifurcation analysis reveals the importance of torus bifurcations in mediating transitions to antiphase dynamics and of saddle-node of limit cycle bifurcations in switching of the dynamics between single and two-mode regimes.Comment: 7 pages, 9 figure

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Systematic Errors in the Estimation of Black Hole Masses by Reverberation Mapping

    Get PDF
    The mass of the central black hole in many active galactic nuclei has been estimated on the basis of the assumption that the dynamics of the broad emission line gas are dominated by the gravity of the black hole. The most commonly-employed method is to estimate a characteristic size-scale rr_* from reverberation mapping experiments and combine it with a characteristic velocity vv_* taken from the line profiles; the inferred mass is then estimated by rv2/Gr_* v_*^2/G. We critically discuss the evidence supporting the assumption of gravitational dynamics and find that the arguments are still inconclusive. We then explore the range of possible systematic error if the assumption of gravitational dynamics is granted. Inclination relative to a flattened system may cause a systematic underestimate of the central mass by a factor (h/r)2\sim (h/r)^2, where h/rh/r is the aspect ratio of the flattening. The coupled effects of a broad radial emissivity distribution, an unknown angular radiation pattern of line emission, and sub-optimal sampling in the reverberation experiment can cause additional systematic errors as large as a factor of 3 or more in either direction.Comment: 19 pages, 4 figures, AASLaTeX, accepted by Ap

    Optimal search strategies for hidden targets

    Full text link
    What is the fastest way of finding a randomly hidden target? This question of general relevance is of vital importance for foraging animals. Experimental observations reveal that the search behaviour of foragers is generally intermittent: active search phases randomly alternate with phases of fast ballistic motion. In this letter, we study the efficiency of this type of two states search strategies, by calculating analytically the mean first passage time at the target. We model the perception mecanism involved in the active search phase by a diffusive process. In this framework, we show that the search strategy is optimal when the average duration of "motion phases" varies like the power either 3/5 or 2/3 of the average duration of "search phases", depending on the regime. This scaling accounts for experimental data over a wide range of species, which suggests that the kinetics of search trajectories is a determining factor optimized by foragers and that the perception activity is adequately described by a diffusion process.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
    corecore