58 research outputs found

    AXIS—an Autonomous Expendable Instrument System

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 2673-2682, doi:10.1175/JTECH-D-17-0054.1.Expendable bathythermographs (XBT) to profile upper-ocean temperatures from vessels in motion have been in use for some 50 years now. Developed originally for navy use, they were soon adapted by oceanographers to map out upper-ocean thermal structure and its space–-time variability from both research vessels and merchant marine vessels in regular traffic. These activities continue today. This paper describes a new technology—the Autonomous Expendable Instrument System (AXIS)—that has been developed to provide the capability to deploy XBT probes on a predefined schedule, or adaptively in response to specific events without the presence of an observer on board. AXIS is a completely self-contained system that can hold up to 12 expendable probes [XBTs, XCTDs, expendable sound velocimeter (XSV)] in any combination. A single-board Linux computer keeps track of what probes are available, takes commands from ashore via Iridium satellite on what deployment schedule to follow, and records and forwards the probe data immediately with a time stamp and the GPS position. This paper provides a brief overview of its operation, capabilities, and some examples of how it is improving coverage along two lines in the Atlantic.Initial development of AXIS mechanical design elements wasmade possible by awards from the Cecil H. and Ida M. Green Technology Innovation Fund and the Sealark Foundation to the team of Dave Fratantoni, Keith von der Heydt (WHOI), and Terry Hammar (WHOI). Construction of the first full AXIS prototype was supported by a technology grant from the National Science Foundation (OCE-0926853) and the second one through an NSF-funded (OCE-1061185) subcontract from the University of Rhode Island.2018-06-2

    Using sentinel nodes to evaluate changing connectivity in a protected area network

    Get PDF
    It has been recognized that well-connected networks of protected areas are needed to halt the continued loss of global biodiversity. The recently signed Kunming-Montreal biodiversity agreement commits countries to protecting 30% of terrestrial lands in well-connected networks of protected areas by 2030. To meet these ambitious targets, land-use planners and conservation practitioners will require tools to identify areas important for connectivity and track future changes. In this study we present methods using circuit theoretic models with a subset of sentinel park nodes to evaluate connectivity for a protected areas network. We assigned a lower cost to natural areas within protected areas, under the assumption that animal movement within parks should be less costly given the regulation of activities. We found that by using mean pairwise effective resistance (MPER) as an indicator of overall network connectivity, we were able to detect changes in a parks network in response to simulated land-use changes. As expected, MPER increased with the addition of high-cost developments and decreased with the addition of new, low-cost protected areas. We tested our sentinel node method by evaluating connectivity for the protected area network in the province of Ontario, Canada. We also calculated a node isolation index, which highlighted differences in protected area connectivity between the north and the south of the province. Our method can help provide protected areas ecologists and planners with baseline estimates of connectivity for a given protected area network and an indicator that can be used to track changes in connectivity in the future

    At Sea Test 2 recovery cruise : Cruise 206 on board R/V Knorr April 10 - 15, 2012 Woods Hole - Woods Hole, MA

    Get PDF
    The R/V Knorr, on Cruise 206, carried out the recovery of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Knorr departed from Woods Hole, Massachusetts on April 10, 2012 and steamed south to the location of the mooring deployments on the shelf break. Over five days, April 10-15, Knorr surveyed the bottom at the planned mooring sites, recovered the moorings, and carried out preliminary investigations of mechanical and electrical functionality on the recovered moorings and mooring hardware, including observations of biofouling and corrosion. Knorr returned to Woods Hole on April 15, 2012.Funding was provided by the National Science Foundation contract #SA9-10 through the Consortium for Ocean Leadershi

    Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003

    At Sea Test 2 deployment cruise : cruise 475 on board R/V Oceanus September 22 – 26, 2011 Woods Hole –Woods Hole, MA

    Get PDF
    The R/V Oceanus, on Cruise 475, carried out the deployment of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Oceanus departed from Woods Hole, Massachusetts on September 22, 2011 and steamed south to the location of the mooring deployments on the shelf break. Over three days, September 23-25, Oceanus surveyed the bottom at the planned mooring sites, deployed the moorings, and carried out on site verification of the functioning of the moorings and moored hardware. Oceanus returned to Woods Hole on September 26, 2011.Funding was provided by the National Science Foundation through the Consortium for Ocean Leadershi

    Management of adverse events associated with idelalisib treatment: expert panel opinion

    Get PDF
    Idelalisib is a first-in-class selective, oral, phosphatidylinositol 3-kinase delta (PI3KÎŽ) inhibitor approved for the treatment of several types of blood cancer. Idelalisib has demonstrated significant efficacy and a tolerable safety profile in clinical trials. However, the US prescribing information contains a black box warning for fatal and/or severe diarrhea or colitis, hepatotoxicity, pneumonitis and intestinal perforation. An expert panel was convened to review the pathology of these treatment-emergent adverse events (TEAEs) to propose key management tools for patients receiving idelalisib therapy. This article provides an overview of idelalisib TEAEs reported in clinical trials, and a summary of the panel's recommendations for identification and management of idelalisib treatment-emergent diarrhea or colitis as well as a discussion of transaminitis and pneumonitis. For idelalisib-related diarrhea or colitis (including unresolved grade 2 and grade ≄ 3), after exclusion of infectious causes, the panel recommends individualized treatment with budesonide or oral or intravenous steroid therapy

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
    • 

    corecore