4 research outputs found

    Impact of lymphopenia on survival for elderly patients with glioblastoma: A secondary analysis of the CCTG CE.6 (EORTC 26062-22061, TROG03.01) randomized clinical trial

    Get PDF
    Background: Lymphopenia may lead to worse outcomes for glioblastoma patients. This study is a secondary analysis of the CCTG CE.6 trial evaluating the impact of chemotherapy and radiation on lymphopenia, and effects of lymphopenia on overall survival (OS). Methods: CCTG CE.6 randomized elderly glioblastoma patients (≥ 65 years) to short-course radiation alone (RT) or short-course radiation with temozolomide (RT + TMZ). Lymphopenia (mild-moderate: grade 1-2; severe: grade 3-4) was defined per CTCAE v3.0, and measured at baseline, 1 week and 4 weeks post-RT. Preselected key factors for analysis included age, sex, ECOG, resection extent, MGMT methylation, Mini-Mental State Examination, and steroid use. Multinomial logistic regression and multivariable Cox regression models were used to identify lymphopenia-associated factors and association with survival. Results: Five hundred and sixty-two patients were analyzed (281 RT vs 281 RT+TMZ). At baseline, both arms had similar rates of mild-moderate (21.4% vs 21.4%) and severe (3.2% vs 2.9%) lymphopenia. However, at 4 weeks post-RT, RT+TMZ was more likely to develop lymphopenia (mild-moderate: 27.9% vs 18.2%; severe: 9.3% vs 1.8%; pP \u3c .001). Baseline lymphopenia (hazard ratio [HR] 1.3) was associated with worse OS (HR: 1.30, 95% confidence interval [CI] 1.05-1.62; P = .02), regardless of MGMT status. Conclusions: Development of post-RT lymphopenia is associated with addition of TMZ and baseline lymphopenia and not with RT alone in patients treated with short-course radiation. However, regardless of MGMT status, only baseline lymphopenia is associated with worse OS, which may be considered as a prognostic biomarker for elderly glioblastoma patients

    Circulating Tumor DNA Identifies Diverse Landscape of Acquired Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Metastatic Colorectal Cancer.

    No full text
    Purpose: Anti-epidermal growth factor receptor (EGFR) antibodies are effective treatments for metastatic colorectal cancer. Improved understanding of acquired resistance mechanisms may facilitate circulating tumor DNA (ctDNA) monitoring, anti-EGFR rechallenge, and combinatorial strategies to delay resistance. Methods: Patients with treatment-refractory metastatic colorectal cancer (n = 169) enrolled on the CO.26 trial had pre-anti-EGFR tissue whole-exome sequencing (WES) compared with baseline and week 8 ctDNA assessments with the GuardantOMNI assay. Acquired alterations were compared between patients with prior anti-EGFR therapy (n = 66) and those without. Anti-EGFR therapy occurred a median of 111 days before ctDNA assessment. Results: ctDNA identified 12 genes with increased mutation frequency after anti-EGFR therapy, including EGFR (P = .0007), KRAS (P = .0017), LRP1B (P = .0046), ZNF217 (P = .0086), MAP2K1 (P = .018), PIK3CG (P = .018), BRAF (P = .048), and NRAS (P = .048). Acquired mutations appeared as multiple concurrent subclonal alterations, with most showing decay over time. Significant increases in copy-gain frequency were noted in 29 genes after anti-EGFR exposure, with notable alterations including EGFR (P \u3c .0001), SMO (P \u3c .0001), BRAF (P \u3c .0001), MET (P = .0002), FLT3 (P = .0002), NOTCH4 (P = .0006), ERBB2 (P = .004), and FGFR1 (P = .006). Copy gains appeared stable without decay 8 weeks later. There were 13 gene fusions noted among 11 patients, all but one of which was associated with prior anti-EGFR therapy. Polyclonal resistance was common with acquisition of ≥ 10 resistance related alterations noted in 21% of patients with previous anti-EGFR therapy compared with 5% in those without (P = .010). Although tumor mutation burden (TMB) did not differ pretreatment (P = .63), anti-EGFR exposure increased TMB (P = .028), whereas lack of anti-EGFR exposure resulted in declining TMB (P = .014). Conclusion: Paired tissue and ctDNA sequencing identified multiple novel mutations, copy gains, and fusions associated with anti-EGFR therapy that frequently co-occur as subclonal alterations in the same patient
    corecore