104 research outputs found
Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs
Sixteen female cross-bred (Large White × Landrace) pigs (initial weight 65 kg) with venous catheters were randomly allocated to four treatment groups in a 2×2 factorial design. The respective factors were dietary fat (25 or 100 g/kg) and dietary conjugated linoleic acid (CLA; 0 or 10 g CLA-55/kg). Pigs were fed every 3 h (close to ad libitum digestible energy intake) for 8 d and were bled frequently. Plasma glucose and non-esterified fatty acid (NEFA) responses to insulin and adrenaline challenges were determined on day 8. Plasma concentrations of NEFA were significantly increased (10·5 and 5·4 % for low- and high-fat diets respectively, P=0·015) throughout the experiment, suggesting that there was a possible increase in fat mobilisation. The increase in lipolysis, an indicator of ß-adrenergic stimulated lipolysis, was also evident in the NEFA response to adrenaline. However, the increase in plasma triacylglycerol (11·0 and 7·1 % for low- and high-fat diets respectively, P=0·008) indicated that CLA could have reduced fat accretion via decreased adipose tissue triacylglycerol synthesis from preformed fatty acids, possibly through reduced lipoprotein lipase activity. Plasma glucose, the primary substrate for de novo lipid synthesis, and plasma insulin levels were unaffected by dietary CLA suggesting that de novo lipid synthesis was largely unaffected (P=0·24 and P=0·30 respectively). In addition, the dietary CLA had no effect upon the ability of insulin to stimulate glucose removal.<br /
Consumer palatability scores and volatile beef flavor compounds of five USDA quality grades and four muscles
Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades (Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking
The Impact of Enhancement, Degree of Doneness, and USDA Quality Grade on Beef Flavor Development
The objective of this study was to determine the impact of enhancement, degree of doneness (DOD), and USDA quality grade on beef volatile flavor compounds from cooked strip loin steaks. This study also aimed to evaluate relationships between volatile compounds and consumer sensory responses. Beef strip loins (n = 72; 24/grade) of 3 quality grades (USDA Prime, Low Choice, and Low Select) were enhanced (8% of green weight with brine containing 0.35% salt and 0.4% sodium phosphate) or not enhanced, and cooked to 3 DOD (Rare: 60Β°C; Medium: 71Β°C; Very Well Done: 83Β°C) before volatile analysis. Volatile compounds were evaluated through a split-plot design where enhancement level and quality grade were used as the whole plot factors and DOD served as the subplot factor. Principal component analysis (PCA) was utilized to explore relationships between volatile compounds, consumer response, and treatments. The majority of compounds (n = 32) were impacted (P 0.05). In agreement, PCA indicated volatile compound production was primarily driven by degree of doneness and quality grade. There was no strong link between enhancement and beef volatile flavor compound development, despite the dramatically improved flavor liking scores from consumers
Palatability of Beef Strip Loin Steaks Representing Various Marbling and Maturity Levels from Grain-Fed Beef
This study compared palatability traits of beef strip loin steaks with varying marbling scores from young and mature grain-fed beef. Strip loins (n = 150) were selected from grain fed cattle representing ten treatments with the following USDA marbling scores: Slightly Abundant or greater (SLAB+), Moderate or Modest (MD/MT), Small (SM), Slight (SL), and Traces or Practically Devoid (TR/PD) from young βAβ maturity carcasses (Y) and mature βCβ or greater maturity carcasses (M). Subprimals were fabricated into 2.5-cm steaks at 21 d postmortem and stored frozen until further analysis. Consumer (n = 120) sensory panelists evaluated cooked steaks for tenderness, juiciness, flavor liking, and overall liking. Trained panelists (n = 15 sessions) evaluated each sample for initial and sustained juiciness, initial and sustained tenderness, flavor intensity, and off-flavor intensity. For all traits, consumer and trained panelistsβ scores generally decreased with decreasing marbling score, regardless of maturity. According to consumers, maturity had no effect on juiciness or flavor liking within each marbling score, except flavor liking of SLAB+ was greater (P < 0.05) for young than mature carcasses. Conversely, young carcasses had greater tenderness scores than mature within all marbling categories except SM, which translated to greater overall liking of MD/MT, SL, and TR/PD of young compared to their mature counterparts (P < 0.05). Trained panelists detected very few differences between young and mature samples within their respective marbling score; however, M-MD/MT had lower initial and sustained tenderness coupled with greater off-flavor intensity than Y-MD/MT (P < 0.05). Mature samples with SLAB+ and MD/MT marbling were rated greater than or equal to Y-SM for all traits, indicating the presence of marbling from feeding a grain diet prior to harvest may elicit a similar eating experience to young beef by offsetting negative palatability traits often associated with mature beef
Effects of Marbling and Postmortem Aging on Consumer Assessment of United States Lamb Loin
Consumer sensory analysis was performed to evaluate the effects of three marbling categories [LOW, Intermediate (MED), and HIGH] and 2 postmortem aging categories (21 d and 42 d) on the palatability of lamb loin chops as determined by U.S. consumers and to determine the relationship between marbling, flank streaking, intramuscular fat percentage (IMF), and palatability traits. Marbling and aging did not interact to affect any of the scores for palatability attributes, their acceptances, or the frequency of their overall eating quality classifications (P 0.05). Aging also influenced (P < 0.05) all traits, as consumers scored 21 d samples greater for all palatability traits than their 42 d counterparts. A greater (P < 0.05) percentage of consumers categorized 42 d samples as βunsatisfactoryβ and fewer as βbetter than everydayβ or βpremium qualityβ than 21 d samples. A larger proportion of consumers categorized HIGH samples as βpremium qualityβ than MED or LOW and fewer called HIGH βgood everyday qualityβ compared to MED (P < 0.05). Flank streaking, marbling score, and IMF were all influenced (P < 0.01) by marbling category in a linear fashion. Increasing marbling score, more so than flank streaking, was positively linked to increasing eating quality scores. Also, tenderness, juiciness and flavor liking are major drivers for consumer sensory scores for overall liking, with flavor liking having the strongest relationship to overall liking of lamb. Overall, consumers preferred HIGH marbling over LOW and MED marbling loin chops, but had difficulty distinguishing between LOW and MED. Furthermore, extending postmortem aging of lamb loin from 21 to 42 d reduced scores for eating quality traits
Consumer Evaluation of Plant-Based Ground Beef Alternatives in Real-World Eating Scenarios
The objective of this study was to evaluate the palatability of 3 plant-based ground beef alternatives (GBA) in comparison to ground beef under real-world hamburger and taco scenarios. The 3 plant-based GBA alternatives used represented a modern GBA sold at retail (RGBA), a modern GBA sold in foodservice (FGBA), and a traditional soy-based GBA (TGBA). Additionally, 80% lean ground beef was evaluated. Consumers (N=240; n=120 per panel type) evaluated samples for juiciness, tenderness, texture, beef flavor, overall flavor, overall liking, purchase intent,and purchase price and rated traits as either acceptable or unacceptable. For hamburger panels, consumers were served samples on buns and were given the option to add cheese, lettuce, pickles, ketchup, and/or mustard. For taco panels, samples were seasoned with a taco seasoning blend and served on flour tortillas, with consumers given the option to add cheese, lettuce, and/or tomatoes. In both scenarios, ground beef was rated higher (P<0.05) by consumers for juiciness, texture liking, overall flavor liking, beef flavor liking, overall liking, purchase intent, and price willing to be paid than all 3 GBA but was rated similar (P>0.05) for tenderness to FGBA and RGBA. Additionally, a higher (P<0.05) percentage of ground beef samples were rated acceptable overall and for flavor characteristics than all 3 GBA. Few differences were found between FGBA and RGBA for any palatability characteristics evaluated. TGBA was rated lower (P<0.05) than all other treatments for all palatability traits for taco panels and was similar (P>0.05) to only RGBA for beef flavor and overall flavor liking within hamburger panels. These results indicate that GBA currently available to consumers do not have improved palatability characteristics when used as an ingredient in a taco or hamburger scenario
Effects of Irradiation Temperature on the Response of CeO2, ThO2, and UO2 to Highly Ionizing Radiation
Microcrystalline CeO2, ThO2, and UO2 were irradiated with 198 MeV 132Xe ions to the same fluence at temperatures ranging from 25 Β°C to 700 Β°C then characterized by synchrotron X-ray diffraction and X-ray absorption spectroscopy. All samples retain crystallinity and their nominal fluorite-type phase at a fluence of 1.5 Γ 1013 ions/cm2. Both CeO2 and ThO2 display defect-induced unit cell expansion after irradiation at room temperature (βΌ0.15% and βΌ0.10%, respectively), yet as irradiation temperature increases, the maximum swelling produced decreases to βΌ0.02%. Alternatively, UO2 shows an initial contraction in unit cell parameter (approximately β0.05%) for room temperature irradiation, most likely related to irradiation-enhanced annealing or irradiation-induced oxidation. At higher temperatures (above 200 Β°C) UO2 begins to swell, surpassing its unit cell parameter prior to irradiation (βΌ0.05%), an effect which could be attributed to minor reduction in uranium oxidation state in vacuum. However, while CeO2 irradiated at room temperature undergoes partial reduction, both UO2 and ThO2 exhibit no measurable change in cation oxidation state as evidenced by X-ray absorption spectroscopy. All samples display a decrease in irradiation-induced heterogeneous microstrain as a function of increasing irradiation temperature. Β© 2019 Elsevier B.V.This work was supported by the Energy Frontier Research Center Materials Science of Actinides funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0001089). Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under award No. DE-NA0001974 and DOE-BES under award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under contract No. DE-AC02-06CH11357. W.F.C. and R.I.P. gratefully acknowledge support from the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) through the Capital/DOE Alliance Center (DE-NA0003858). HPCAT beamtime was granted by the Capital/DOE Alliance Center
Honduran and U.S. Consumer Assessment of Beef from Various Production Systems with or Without Marinating
Our objective was to evaluate the effects of different Honduran cattle production systems, enhancement, and country of origin on palatability of the longissimus muscle aged 21 d postmortem as determined by U.S. and Honduran consumers (n = 240/country). U.S.-sourced strip loins (n = 10/treatment) were selected: USDA Select (SE) and Top (upper 2/3) Choice (TC). Honduran-sourced strip loins (n = 10/treatment) included: 1) dual-purpose bulls, raised on native pasture (HDP), 2) F1 crossbred Brahman bulls finished on a corn-based grain diet for 180 d (HCF), and 3) purebred Brahman bulls finished on a sugarcane-based diet for 180 d (HSC). Ten additional strip loins from each Honduran treatment were selected and enhanced (E; 112% ΓΒ± 3.5%) with water, salt, and tripolyphosphate, resulting in EHDP, EHCF, and EHSC. Steaks were cooked to 77ΓΒ°C prior to consumer evaluation of tenderness, juiciness, and flavor and overall liking, with classification of each trait as acceptable or unacceptable. Consumers indicated if they were willing to pay 0, 3, 6, or 10 USD/0.45 kg. Consumer data were analyzed using the GLIMMIX procedure of SAS as a split plot design, with treatment as the whole plot factor and country and the country Γβ treatment interaction as the subplot factors, including panel as a random effect. The EHCF had greater (P < 0.05) scores for tenderness, juiciness, flavor and overall liking. No differences (P > 0.05) were found between TC and SE when scoring palatability traits, but more (P < 0.05) consumers found TC acceptable for juiciness compared to SE. Honduran consumers ranked all palatability traits greater than U.S consumers and found a greater percentage of samples acceptable for tenderness (P < 0.05). Enhancement of Honduran treatments had a positive effect on palatability traits, as well as the acceptability of those traits. Regardless of the differences in breeds, using high-energy diets and enhancement resulted in greater palatability scores
Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes
Background \ud
Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulinβ like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four \ud
Caenorhabditis species. \ud
\ud
Methodology/Principal Findings \ud
We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged \ud
significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud
\ud
Conclusions \ud
The gonochoristic species display a significantly longer lifespan (p < 0.0001)and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
Phenotypic covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes
Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulinβlike growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. \ud
\ud
Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud
\ud
Conclusions: The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
- β¦