465 research outputs found

    A tractable inhomogeneous closure theory for flow over mean topography

    Get PDF
    The quasi-diagonal direct interaction approximation (QDIA) is shown to be a computationally tractable closure theory for inhomogeneous two-dimensional turbulent flow over mean (single-realization) topography. In this paper numerical results for the QDIA are compared to direct numerical simulation (DNS) at moderate Reynolds number for two cases with quite different topographic and mean field amplitudes. The QDIA is found to be in excellent agreement with DNS for cases where the small-scale topographic amplitude is significant. For cases where the small-scale topography is weak, the QDIA closely reproduces the evolving mean field and large-scale energy containing transients but under represents the amplitudes of the small-scale transients in a similar way to the homogeneous DIA. We discuss the prospects of ameliorating the small-scale deficiencies using a regularization of the interaction coefficients

    Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability

    No full text
    A critical question in the global warming debate concerns the causes of the observed trends of the Southern Hemisphere (SH) atmospheric circulation over recent decades. Secular trends have been identified in the frequency of occurrence of circulation regimes, namely the positive phase of the Southern Annular Mode (SAM) and the hemispheric wave-3 pattern which is associated with blocking. Previous studies into the causes of these secular trends have either been purely model based, have not included observational forcing data or have mixed external forcing with indices of internal climate variability impeding a systematic and unbiased attribution of the causes of the secular trends. Most model studies also focused mainly on the austral summer season. However, the changes to the storm tracks have occurred in all seasons and particularly in the austral winter and early spring when midlatitude blocking is most active and stratospheric ozone should not play a role. Here we systematically attribute the secular trends over the recent decades using a non-stationary clustering method applied to both reanalysis and observational forcing data from all seasons. While most previous studies emphasized the importance of stratospheric ozone depletion in causing austral summer SH circulation trends, we show observational evidence that anthropogenic greenhouse gas concentrations have been the major driver of these secular trends in the SAM and blocking when all seasons are considered. Our results suggest that the recovery of the ozone hole might delay the signal of global warming less strongly than previously thought and that effects from all seasons are likely crucial in understanding the causes of the secular trends

    Retraction

    Get PDF

    Integro-differential closure equations for inhomogeneous turbulence

    Get PDF
    We present numerical and computational techniques to solve systems of integro-differential closure equations for inhomogeneous two-dimensional turbulent flow. The closure equations, representing the first tractable closure theory for inhomogeneous flow over mean (single realization) topography, are based on a quasi-diagonal direct interaction approximation derived via renormalization techniques. The equations are computationally challenging due to the potentially long time history integrals. In order to reduce the computational cost we have implemented a formal restart procedure for the two and three point cumulant terms. The restart procedure is shown to be in good agreement with the closure without restarts and results are compared to direct numerical simulation of the barotropic vorticity equation

    Opening and closure of intraventricular neuroendoscopic procedures in infants under 1 year of age: institutional technique, case series and review of the literature

    Get PDF
    Purpose: Intraventricular neuroendoscopic techniques, particularly third ventriculostomy, are employed increasingly in the management of infantile hydrocephalus. However, surgical access to the ventricular cavities is associated with a risk of post-operative cerebrospinal fluid (CSF) leak. Here, we describe a structured, multi-layered approach to wound opening and closure which aims to maximise the natural tissue barriers against CSF leakage. We present a series of patients undergoing this technique and subsequently review the literature regarding opening and closure techniques in paediatric intraventricular neuroendoscopic procedures. Methods: We performed a retrospective case series analysis of patients under 1 year of age who underwent intraventricular neuroendoscopic procedures in a single institution over a 5-year period. Patients were identified from an institutional operative database, and operation notes and clinical records were subsequently reviewed. Results: 28 patients fulfilled the inclusion criteria for this study. The mean age at operation was 9 weeks. 27 patients underwent endoscopic third ventriculostomy whilst 1 underwent endoscopic septostomy, and all patients underwent our structured, multi-layered opening and closure technique. Follow-up ranged from 4 months to 5 years. There were no cases of post-operative CSF leak, infection or wound breakdown. 12 patients remained shunt-free at the last follow-up, with the remaining 16 requiring shunt insertion for progressive hydrocephalus at a mean of 24 days post-operatively. Conclusion: Various methods aiming to prevent post-operative CSF leak have been reported in the literature. We propose that our institutional technique may be of benefit in minimising this risk in infants undergoing endoscopic third ventriculostomy and similar intraventricular neuroendoscopic procedures
    • …
    corecore