47 research outputs found

    An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS<sup>Âź</sup>-1S).</p> <p>Methods</p> <p>A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS<sup>Âź</sup>-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS<sup>Âź</sup>-1S surface was evaluated with image processing software.</p> <p>Results</p> <p>Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS<sup>Âź</sup>-1S with an empty defect site was recorded.</p> <p>Conclusion</p> <p>The ex vivo CPM animal model is appropriate in investigating CaReS<sup>Âź</sup>-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects.</p

    Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

    Get PDF
    [Abstract] Objectives: To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies. Materials and Methodology: The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed. Results: Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046 vs 0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05). CCND1 mRNA and protein expression levels, and immunopositivity for Ki67 revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higher SOX9 and Col II expression in chondrocytes from deep than from superficial zone (p<0.05, T student test). Conclusions: The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes.Servizo Galego de SaĂșde; PS07/84Instituto de Salud Carlos III; CIBER BBN CB06-01-0040Ministerio Ciencia e Innovacion; PLE2009-0144Ministerio Ciencia e InnovaciĂłn; PI 08/202

    Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells

    Get PDF
    BACKGROUND: Astrocytomas are the most common type of primary central nervous system tumors. They are frequently associated with genetic mutations that deregulate cell cycle and render these tumors resistant to apoptosis. STAT3, signal transducer and activator of transcription 3, participates in several human cancers by inducing cell proliferation and inhibiting apoptosis and is frequently activated in astrocytomas. METHODS: RNA interference was used to knockdown STAT3 expression in human astrocytes and astrocytoma cell lines. The effect of STAT3 knockdown on apoptosis, cell proliferation, and gene expression was then assessed by standard methods. RESULTS: We have found that STAT3 is constitutively activated in several human astrocytoma cell lines. Knockdown of STAT3 expression by siRNA induces morphologic and biochemical changes consistent with apoptosis in several astrocytoma cell lines, but not in primary human astrocytes. Moreover, STAT3 is required for the expression of the antiapoptotic genes survivin and Bcl-xL in the A172 glioblastoma cell line. CONCLUSION: These results show that STAT3 is required for the survival of some astrocytomas. These studies suggest STAT3 siRNA could be a useful therapeutic agent for the treatment of astrocytomas

    Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD) during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without) ADHD.</p> <p>Methods</p> <p>Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months) and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls) while an electroencephalogram (EEG) was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage.</p> <p>Results</p> <p>When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC) between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC) between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency). When visual cues were used EEG-activity preceding antisaccades did not differ between groups.</p> <p>Conclusion</p> <p>Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.</p

    Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome

    Get PDF
    Microcephaly–capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor–mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome

    Perinatal inflammation influences but does not arrest rapid immune development in preterm babies

    Get PDF
    Infection and infection-related complications are important causes of death and morbidity following preterm birth. Despite this risk, there is limited understanding of the development of the immune system in those born prematurely, and of how this development is influenced by perinatal factors. Here we prospectively and longitudinally follow a cohort of babies born before 32 weeks of gestation. We demonstrate that preterm babies, including those born extremely prematurely (<28 weeks), are capable of rapidly acquiring some adult levels of immune functionality, in which immune maturation occurs independently of the developing heterogeneous microbiome. By contrast, we observe a reduced percentage of CXCL8-producing T cells, but comparable levels of TNF-producing T cells, from babies exposed to in utero or postnatal infection, which precedes an unstable post-natal clinical course. These data show that rapid immune development is possible in preterm babies, but distinct identifiable differences in functionality may predict subsequent infection mediated outcomes
    corecore