510 research outputs found
Airflow limitation or static hyperinflation: which is more closely related to dyspnea with activities of daily living in patients with COPD?
<p>Abstract</p> <p>Background</p> <p>Dyspnea while performing the activities of daily living has been suggested to be a better measurement than peak dyspnea during exercise. Furthermore, the inspiratory capacity (IC) has been shown to be more closely related to exercise tolerance and dyspnea than the FEV<sub>1</sub>, because dynamic hyperinflation is the main cause of shortness of breath in patients with COPD. However, breathlessness during exercise is measured in most studies to evaluate this relationship.</p> <p>Purpose</p> <p>To evaluate the correlation between breathlessness during daily activities and airflow limitation or static hyperinflation in COPD.</p> <p>Methods</p> <p>We examined 167 consecutive outpatients with stable COPD. The Baseline Dyspnea Index (BDI) was used to evaluate dyspnea with activities of daily living. The relationship between the BDI score and the clinical measurements of pulmonary function was then investigated.</p> <p>Results</p> <p>The Spearman rank correlation coefficients (Rs) between the BDI score and the FEV<sub>1</sub>(L), FEV<sub>1</sub>(%pred) and FEV<sub>1</sub>/FVC were 0.60, 0.56 and 0.56, respectively. On the other hand, the BDI score also correlated with the IC, IC/predicted total lung capacity (TLC) and IC/TLC (Rs = 0.45, 0.46 and 0.47, respectively). Although all of the relationships studied were strongly correlated, the correlation coefficients were better between dyspnea and airflow limitation than between dyspnea and static hyperinflation. In stepwise multiple regression analyses, the BDI score was most significantly explained by the FEV<sub>1 </sub>(R<sup>2 </sup>= 26.2%) and the diffusion capacity for carbon monoxide (R<sup>2 </sup>= 14.4%) (Cumulative R<sup>2 </sup>= 40.6%). Static hyperinflation was not a significant factor for clinical dyspnea on the stepwise multiple regression analysis.</p> <p>Conclusion</p> <p>Both static hyperinflation and airflow limitation contributed greatly to dyspnea in COPD patients.</p
Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice
Background: CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNγ-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Methods: Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Results: Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNγ and CXCR3 ligands (particularly CXCL10). Conclusion: Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNγ and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS
Increased levels of (class switched) memory B cells in peripheral blood of current smokers
There is increasing evidence that a specific immune response contributes to the pathogenesis of COPD. B-cell follicles are present in lung tissue and increased anti-elastin titers have been found in plasma of COPD patients. Additionally, regulatory T cells (Tregs) have been implicated in its pathogenesis as they control immunological reactions. We hypothesize that the specific immune response in COPD is smoke induced, either by a direct effect of smoking or as a result of smoke-induced lung tissue destruction (i.e. formation of neo-epitopes or auto antigens). Furthermore, we propose that Tregs are involved in the suppression of this smoke-induced specific immune response
Potential therapeutic implications of new insights into respiratory syncytial virus disease
Viral bronchiolitis is the most common cause of hospitalization in infants under 6 months of age, and 70% of all cases of bronchiolitis are caused by respiratory syncytial virus (RSV). Early RSV infection is associated with respiratory problems such as asthma and wheezing later in life. RSV infection is usually spread by contaminated secretions and infects the upper then lower respiratory tracts. Infected cells release proinflammatory cytokines and chemokines, including IL-1, tumor necrosis factor-α, IL-6, and IL-8. These activate other cells and recruit inflammatory cells, including macrophages, neutrophils, eosinophils, and T lymphocytes, into the airway wall and surrounding tissues. The pattern of cytokine production by T lymphocytes can be biased toward 'T-helper-1' or 'T-helper-2' cytokines, depending on the local immunologic environment, infection history, and host genetics. T-helper-1 responses are generally efficient in antiviral defense, but young infants have an inherent bias toward T-helper-2 responses. The ideal intervention for RSV infection would be preventive, but the options are currently limited. Vaccines based on protein subunits, live attenuated strains of RSV, DNA vaccines, and synthetic peptides are being developed; passive antibody therapy is at present impractical in otherwise healthy children. Effective vaccines for use in neonates continue to be elusive but simply delaying infection beyond the first 6 months of life might reduce the delayed morbidity associated with infantile disease
Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells
Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer
Quasiparticle alignments and alpha-decay fine structure of Pt-175
Excited states and decay properties of 175 Pt have been investigated using the 92 Mo ( 86 Sr , 2 p n ) fusion-evaporation reaction. The JUROGAM I γ -ray spectrometer and the GREAT spectrometer were used in conjunction with the gas-filled recoil separator RITU for the measurement of the radiation at the target and focal plane positions, respectively. Two new band structures, assigned to be based on the I π = ( 7 / 2 − ) ground state in 175 Pt, have been established and the known yrast band has been extended up to I π = ( 49 / 2 + ) . Rotational properties of the excited states in 175 Pt have been investigated within the cranked shell-model formalism. The low-frequency changes in the alignments of the positive- and negative-parity bands are interpreted as a sign of proton-pair excitations in the rotating core. Furthermore, the α -decay measurements reveal a candidate for a fourth α -decay branch in 175 Pt, feeding a non-yrast state in 171 Os
Mental health: A cause or consequence of injury? A population-based matched cohort study
BACKGROUND: While a number of studies report high prevalence of mental health problems among injured people, the temporal relationship between injury and mental health service use has not been established. This study aimed to quantify this relationship using 10 years of follow-up on a population-based cohort of hospitalised injured adults. METHODS: The Manitoba Injury Outcome Study is a retrospective population-based matched cohort study that utilised linked administrative data from Manitoba, Canada, to identify an inception cohort (1988–1991) of hospitalised injured cases (ICD-9-CM 800–995) aged 18–64 years (n = 21,032), which was matched to a non-injured population-based comparison group (n = 21,032). Pre-injury comorbidity and post-injury mental health data were obtained from hospital and physician claims records. Negative Binomial regression was used to estimate adjusted rate ratios (RRs) to measure associations between injury and mental health service use. RESULTS: Statistically significant differences in the rates of mental health service use were observed between the injured and non-injured, for the pre-injury year and every year of the follow-up period. The injured cohort had 6.56 times the rate of post-injury mental health hospitalisations (95% CI 5.87, 7.34) and 2.65 times the rate of post-injury mental health physician claims (95% CI 2.53, 2.77). Adjusting for comorbidities and pre-existing mental health service use reduced the hospitalisations RR to 3.24 (95% CI 2.92, 3.60) and the physician claims RR to 1.53 (95% CI 1.47, 1.59). CONCLUSION: These findings indicate the presence of pre-existing mental health conditions is a potential confounder when investigating injury as a risk factor for subsequent mental health problems. Collaboration with mental health professionals is important for injury prevention and care, with ongoing mental health support being a clearly indicated service need by injured people and their families. Public health policy relating to injury prevention and control needs to consider mental health strategies at the primary, secondary and tertiary level
A retrospective cohort study of stroke onset: implications for characterizing short term effects from ambient air pollution
<p>Abstract</p> <p>Background</p> <p>Case-crossover studies used to investigate associations between an environmental exposure and an acute health response, such as stroke, will often use the day an individual presents to an emergency department (ED) or is admitted to hospital to infer when the stroke occurred. Similarly, they will use patient's place of residence to assign exposure. The validity of using these two data elements, typically extracted from administrative databases or patient charts, to define the time of stroke onset and to assign exposure are critical in this field of research as air pollutant concentrations are temporally and spatially variable. Our a priori hypotheses were that date of presentation differs from the date of stroke onset for a substantial number of patients, and that assigning exposure to ambient pollution using place of residence introduces an important source of exposure measurement error. The objective of this study was to improve our understanding on how these sources of errors influence risk estimates derived using a case-crossover study design.</p> <p>Methods</p> <p>We sought to collect survey data from stroke patients presenting to hospital EDs in Edmonton, Canada on the date, time, location and nature of activities at onset of stroke symptoms. The daily mean ambient concentrations of NO<sub>2 </sub>and PM<sub>2.5 </sub>on the self-reported day of stroke onset was estimated from continuous fixed-site monitoring stations.</p> <p>Results</p> <p>Of the 336 participating patients, 241 were able to recall when their stroke started and 72.6% (95% confidence interval [CI]: 66.9 - 78.3%) experienced stroke onset the same day they presented to the ED. For subjects whose day of stroke onset differed from the day of presentation to the ED, this difference ranged from 1 to 12 days (mean = 1.8; median = 1). In these subjects, there were no systematic differences in assigned pollution levels for either NO<sub>2 </sub>or PM<sub>2.5 </sub>when day of presentation rather than day of stroke onset was used. At the time of stroke onset, 89.9% (95% CI: 86.6 - 93.1%) reported that they were inside, while 84.5% (95% CI: 80.6 - 88.4%) reported that for most of the day they were within a 15 minute drive from home. We estimated that due to the mis-specification of the day of stroke onset, the risk of hospitalization for stroke would be understated by 15% and 20%, for NO<sub>2 </sub>and PM<sub>2.5</sub>, respectively.</p> <p>Conclusions</p> <p>Our data suggest that day of presentation and residential location data obtained from administrative records reasonably captures the time and location of stroke onset for most patients. Under these conditions, any associated errors are unlikely to be an important source of bias when estimating air pollution risks in this population.</p
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
- …