185 research outputs found

    Long-lived selective spin echoes in dipolar solids under periodic and aperiodic pi-pulse trains

    Full text link
    The application of Carr-Purcell-Meiboom-Gill (CPMG) π−\pi-trains for dynamically decoupling a system from its environment has been extensively studied in a variety of physical systems. When applied to dipolar solids, recent experiments have demonstrated that CPMG pulse trains can generate long-lived spin echoes. While there still remains some controversy as to the origins of these long-lived spin echoes under the CPMG sequence, there is a general agreement that pulse errors during the π−\pi-pulses are a necessary requirement. In this work, we develop a theory to describe the spin dynamics in dipolar coupled spin-1/2 system under a CPMG(ϕ1,ϕ2\phi_{1},\phi_{2}) pulse train, where ϕ1\phi_{1} and ϕ2\phi_{2} are the phases of the π−\pi-pulses. From our theoretical framework, the propagator for the CPMG(ϕ1,ϕ2\phi_{1},\phi_{2}) pulse train is equivalent to an effective ``pulsed'' spin-locking of single-quantum coherences with phase ±ϕ2−3ϕ12\pm\frac{\phi_{2}-3\phi_{1}}{2}, which generates a periodic quasiequilibrium that corresponds to the long-lived echoes. Numerical simulations, along with experiments on both magnetically dilute, random spin networks found in C60_{60} and C70_{70} and in non-dilute spin systems found in adamantane and ferrocene, were performed and confirm the predictions from the proposed theory.Comment: 25 pages, 12 figures, submitted to Physical Review

    Cerebral white matter analysis using diffusion imaging

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2006.Includes bibliographical references (p. 183-198).In this thesis we address the whole-brain tractography segmentation problem. Diffusion magnetic resonance imaging can be used to create a representation of white matter tracts in the brain via a process called tractography. Whole brain tractography outputs thousands of trajectories that each approximate a white matter fiber pathway. Our method performs automatic organization, or segmention, of these trajectories into anatomical regions and gives automatic region correspondence across subjects. Our method enables both the automatic group comparison of white matter anatomy and of its regional diffusion properties, and the creation of consistent white matter visualizations across subjects. We learn a model of common white matter structures by analyzing many registered tractography datasets simultaneously. Each trajectory is represented as a point in a high-dimensional spectral embedding space, and common structures are found by clustering in this space. By annotating the clusters with anatomical labels, we create a model that we call a high-dimensional white matter atlas.(cont.) Our atlas creation method discovers structures corresponding to expected white matter anatomy, such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, etc. We show how to extend the spectral clustering solution, stored in the atlas, using the Nystrom method to perform automatic segmentation of tractography from novel subjects. This automatic tractography segmentation gives an automatic region correspondence across subjects when all subjects are labeled using the atlas. We show the resulting automatic region correspondences, demonstrate that our clustering method is reproducible, and show that the automatically segmented regions can be used for robust measurement of fractional anisotropy.by Lauren Jean O'Donnell.Ph.D

    Marek's Disease Virus VP22: Subcellular Localization and Characterization of Carboxyl Terminal Deletion Mutations

    Get PDF
    AbstractMarek's disease virus (MDV) is an alphaherpesvirus that causes T cell lymphoma and severe immunosuppression in chickens. The MDV UL49 gene, which encodes the tegument viral protein 22 (VP22), has been expressed as a green fluorescent protein (GFP) fusion protein in chicken embryonic fibroblasts to examine its subcellular localization. As with both human herpesvirus 1 and bovine herpesvirus 1VP22-GFP fusion proteins, the MDV VP22-GFP product binds to microtubules and heterochromatin. In addition, the MDV protein also binds to the centrosomes. During mitosis, VP22-GFP binds to sister chromatids, but dissociates from the centrosomes and the microtubules of the mitotic spindle. A series of VP22 carboxy terminal truncation mutants were constructed to define regions responsible for these binding properties. These mutants identified separable domains or motifs responsible for binding microtubules and heterochromatin

    Tractography-Based Parcellation of Cerebellar Dentate Nuclei via a Deep Nonnegative Matrix Factorization Clustering Method

    Full text link
    As the largest human cerebellar nucleus, the dentate nucleus (DN) functions significantly in the communication between the cerebellum and the rest of the brain. Structural connectivity-based parcellation has the potential to reveal the topography of the DN and enable the study of its subregions. In this paper, we investigate a deep nonnegative matrix factorization clustering method (DNMFC) for parcellation of the human DN based on its structural connectivity using diffusion MRI tractography. We propose to describe the connectivity of the DN using a set of curated tractography fiber clusters within the cerebellum. Experiments are conducted on the diffusion MRI data of 50 healthy adults from the Human Connectome Project. In comparison with state-of-the-art clustering methods, DN parcellations resulting from DNMFC show better quality and consistency of parcels across subjects

    TractCloud: Registration-free tractography parcellation with a novel local-global streamline point cloud representation

    Full text link
    Diffusion MRI tractography parcellation classifies streamlines into anatomical fiber tracts to enable quantification and visualization for clinical and scientific applications. Current tractography parcellation methods rely heavily on registration, but registration inaccuracies can affect parcellation and the computational cost of registration is high for large-scale datasets. Recently, deep-learning-based methods have been proposed for tractography parcellation using various types of representations for streamlines. However, these methods only focus on the information from a single streamline, ignoring geometric relationships between the streamlines in the brain. We propose TractCloud, a registration-free framework that performs whole-brain tractography parcellation directly in individual subject space. We propose a novel, learnable, local-global streamline representation that leverages information from neighboring and whole-brain streamlines to describe the local anatomy and global pose of the brain. We train our framework on a large-scale labeled tractography dataset, which we augment by applying synthetic transforms including rotation, scaling, and translations. We test our framework on five independently acquired datasets across populations and health conditions. TractCloud significantly outperforms several state-of-the-art methods on all testing datasets. TractCloud achieves efficient and consistent whole-brain white matter parcellation across the lifespan (from neonates to elderly subjects, including brain tumor patients) without the need for registration. The robustness and high inference speed of TractCloud make it suitable for large-scale tractography data analysis. Our project page is available at https://tractcloud.github.io/.Comment: MICCAI 202

    Superficial White Matter Analysis: An Efficient Point-cloud-based Deep Learning Framework with Supervised Contrastive Learning for Consistent Tractography Parcellation across Populations and dMRI Acquisitions

    Full text link
    Diffusion MRI tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections. White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts. It enables quantification and visualization of whole-brain tractography. Currently, most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity. We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is adapted to our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers for SWM. We train our model on a large-scale tractography dataset including streamline samples from labeled SWM clusters and anatomically implausible streamline samples, and we perform testing on six independently acquired datasets of different ages and health conditions (including neonates and patients with space-occupying brain tumors). Compared to several state-of-the-art methods, SupWMA obtains highly consistent and accurate SWM parcellation results on all datasets, showing good generalization across the lifespan in health and disease. In addition, the computational speed of SupWMA is much faster than other methods.Comment: 12 pages, 7 figures. Extension of our ISBI 2022 paper (arXiv:2201.12528) (Best Paper Award Finalist

    Research using population-based administration data integrated with longitudinal data in child protection settings: A systematic review

    Get PDF
    Introduction: Over the past decade there has been a marked growth in the use of linked population administrative data for child protection research. This is the first systematic review of studies to report on research design and statistical methods used where population-based administrative data is integrated with longitudinal data in child protection settings. Methods: The systematic review was conducted according to Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. The electronic databases Medline (Ovid), PsycINFO, Embase, ERIC, and CINAHL were systematically searched in November 2019 to identify all the relevant studies. The protocol for this review was registered and published with Open Science Framework (Registration DOI: 10.17605/OSF.IO/96PX8) Results: The review identified 30 studies reporting on child maltreatment, mental health, drug and alcohol abuse and education. The quality of almost all studies was strong, however the studies rated poorly on the reporting of data linkage methods. The statistical analysis methods described failed to take into account mediating factors which may have an indirect effect on the outcomes of interest and there was lack of utilisation of multi-level analysis. Conclusion: We recommend reporting of data linkage processes through following recommended and standardised data linkage processes, which can be achieved through greater co-ordination among data providers and researchers
    • …
    corecore