535 research outputs found
Coupling of shells in a carbon nanotube quantum dot
We systematically study the coupling of longitudinal modes (shells) in a
carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to
probe the excitation spectrum in parallel, perpendicular and rotating magnetic
fields. The data is compared to a theoretical model including coupling between
shells, induced by atomically sharp disorder in the nanotube. The calculated
excitation spectra show good correspondence with experimental data.Comment: 8 pages, 4 figure
Quantum transport in carbon nanotubes
Carbon nanotubes are a versatile material in which many aspects of condensed
matter physics come together. Recent discoveries, enabled by sophisticated
fabrication, have uncovered new phenomena that completely change our
understanding of transport in these devices, especially the role of the spin
and valley degrees of freedom. This review describes the modern understanding
of transport through nanotube devices.
Unlike conventional semiconductors, electrons in nanotubes have two angular
momentum quantum numbers, arising from spin and from valley freedom. We focus
on the interplay between the two. In single quantum dots defined in short
lengths of nanotube, the energy levels associated with each degree of freedom,
and the spin-orbit coupling between them, are revealed by Coulomb blockade
spectroscopy. In double quantum dots, the combination of quantum numbers
modifies the selection rules of Pauli blockade. This can be exploited to read
out spin and valley qubits, and to measure the decay of these states through
coupling to nuclear spins and phonons. A second unique property of carbon
nanotubes is that the combination of valley freedom and electron-electron
interactions in one dimension strongly modifies their transport behaviour.
Interaction between electrons inside and outside a quantum dot is manifested in
SU(4) Kondo behavior and level renormalization. Interaction within a dot leads
to Wigner molecules and more complex correlated states.
This review takes an experimental perspective informed by recent advances in
theory. As well as the well-understood overall picture, we also state clearly
open questions for the field. These advances position nanotubes as a leading
system for the study of spin and valley physics in one dimension where
electronic disorder and hyperfine interaction can both be reduced to a very low
level.Comment: In press at Reviews of Modern Physics. 68 pages, 55 figure
Identification of everyday objects on the basis of kinetic contours
Using kinetic contours derived from everyday objects, we investigated how motion affects object identification. In order not to be distinguishable when static, kinetic contours were made from random dot displays consisting of two regions, inside and outside the object contour. In Experiment 1, the dots were moving in only one of two regions. The objects were identified nearly equally well as soon as the dots either in the figure or in the background started to move. RTs decreased with increasing motion coherence levels and were shorter for complex, less compact objects than for simple, more compact objects. In Experiment 2, objects could be identified when the dots were moving both in the figure and in the background with speed and direction differences between the two. A linear increase in either the speed difference or the direction difference caused a linear decrease in RT for correct identification. In addition, the combination of speed and motion differences appeared to be super-additive
Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots
We study low-temperature transport through carbon nanotube quantum dots in
the Coulomb blockade regime coupled to niobium-based superconducting leads. We
observe pronounced conductance peaks at finite source-drain bias, which we
ascribe to elastic and inelastic cotunneling processes enhanced by the
coherence peaks in the density of states of the superconducting leads. The
inelastic cotunneling lines display a marked dependence on the applied gate
voltage which we relate to different tunneling-renormalizations of the two
subbands in the nanotube. Finally, we discuss the origin of an especially
pronounced sub-gap structure observed in every fourth Coulomb diamond
Anharmonicity of a Gatemon Qubit with a Few-Mode Josephson Junction
Coherent operation of gate-voltage-controlled hybrid transmon qubits
(gatemons) based on semiconductor nanowires was recently demonstrated. Here we
experimentally investigate the anharmonicity in epitaxial InAs-Al Josephson
junctions, a key parameter for their use as a qubit. Anharmonicity is found to
be reduced by roughly a factor of two compared to conventional metallic
junctions, and dependent on gate voltage. Experimental results are consistent
with a theoretical model, indicating that Josephson coupling is mediated by a
small number of highly transmitting modes in the semiconductor junction
Majorana bound states in a coupled quantum-dot hybrid-nanowire system
Hybrid nanowires combining semiconductor and superconductor materials appear
well suited for the creation, detection, and control of Majorana bound states
(MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound
states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot
at the end of the nanowire as a spectrometer. Electrostatic gating tuned the
nanowire density to a regime of one or a few ABSs. In an applied axial magnetic
field, a topological phase emerges in which ABSs move to zero energy and remain
there, forming MBSs. We observed hybridization of the MBS with the end-dot
bound state, which is in agreement with a numerical model. The ABS/MBS spectra
provide parameters that are useful for understanding topological
superconductivity in this system.Comment: Article and Supplementary Materia
Voltage-Controlled Superconducting Quantum Bus
We demonstrate the ability of an epitaxial semiconductor-superconductor
nanowire to serve as a field-effect switch to tune a superconducting cavity.
Two superconducting gatemon qubits are coupled to the cavity, which acts as a
quantum bus. Using a gate voltage to control the superconducting switch yields
up to a factor of 8 change in qubit-qubit coupling between the on and off
states without detrimental effect on qubit coherence. High-bandwidth operation
of the coupling switch on nanosecond timescales degrades qubit coherence
Direct microwave measurement of Andreev-bound-state dynamics in a proximitized semiconducting nanowire
The modern understanding of the Josephson effect in mesosopic devices derives
from the physics of Andreev bound states, fermionic modes that are localized in
a superconducting weak link. Recently, Josephson junctions constructed using
semiconducting nanowires have led to the realization of superconducting qubits
with gate-tunable Josephson energies. We have used a microwave circuit QED
architecture to detect Andreev bound states in such a gate-tunable junction
based on an aluminum-proximitized InAs nanowire. We demonstrate coherent
manipulation of these bound states, and track the bound-state fermion parity in
real time. Individual parity-switching events due to non-equilibrium
quasiparticles are observed with a characteristic timescale . The of a topological nanowire
junction sets a lower bound on the bandwidth required for control of Majorana
bound states
- …