23 research outputs found

    Virulence of a T6SS Campylobacter jejuni chicken isolate from North Romania

    Get PDF
    Objectives: In this study we have investigated the in vitro and in vivo virulence characteristics of a new T6SS positive Campylobacter jejuni chicken isolate (SV12) originating from a poultry population in North Romania. A detailed phenotypic characterization was performed and compared to the T6SS negative C. jejuni 81-176 wild strain. Results: Our results indicate that the significantly higher capacity to attach and invade HCT-8 cells of C. jejuni SV12 isolate is associated with increased motility, increased resistance to bile salts and serum resistance, when compared to C. jejuni strain 81-76. Mice infected with the SV12 isolate showed statistically higher levels of colonization at both 7- and 14-days post-inoculation and in the stomach, caecum, duodenum and large intestine. Infection with the SV12 strain induced a stronger immune response as the gene transcript levels of IL-17, TNFα and IFNγ were more pronouncedly up-regulated compared to the C. jejuni strain 81-176. The present study showed that the new isolate SV12 had an enhanced virulence capacity compared to the wild strain which was evident in vivo as well. This work also provides an insight on the colonization pattern and host immune response differences between T6SS positive and T6SS negative C. jejuni

    Identification of Gene Networks and Pathways Associated with Guillain-Barré Syndrome

    Get PDF
    BACKGROUND: The underlying change of gene network expression of Guillain-Barré syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signaling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS. METHODS AND FINDINGS: Quantitative global gene expression microarray analysis of peripheral blood leukocytes was performed on 7 patients with GBS and 7 healthy controls. Gene expression profiles were compared between patients and controls after standardization. The set of genes that significantly correlated with GBS was further analyzed by Ingenuity Pathways Analyses. 256 genes and 18 gene networks were significantly associated with GBS (fold change ≥2, P<0.05). FOS, PTGS2, HMGB2 and MMP9 are the top four of 246 significantly up-regulated genes. The most significant disease and altered biological function genes associated with GBS were those involved in inflammatory response, infectious disease, and respiratory disease. Cell death, cellular development and cellular movement were the top significant molecular and cellular functions involved in GBS. Hematological system development and function, immune cell trafficking and organismal survival were the most significant GBS-associated function in physiological development and system category. Several hub genes, such as MMP9, PTGS2 and CREB1 were identified in the associated gene networks. Canonical pathway analysis showed that GnRH, corticotrophin-releasing hormone and ERK/MAPK signaling were the most significant pathways in the up-regulated gene set in GBS. CONCLUSIONS: This study reveals the gene networks and canonical pathways associated with GBS. These data provide not only networks between the genes for understanding the pathogenic properties of GBS but also map significant pathways for the future development of novel therapeutic strategies

    Progression of chronic pulmonary tuberculosis in mice intravenously infected with ethambutol resistant Mycobacterium tuberculosis

    No full text
    Purpose: Ethambutol (EMB) is an important first line drug, however little information on its molecular mechanism of resistance and pathogenicity of resistant isolates is available. Present work was designed to study virulence of the EMB resistant M. tuberculosis strains and the host responses in-vivo on infection of EMB resistant M. tuberculosis using Balb/c mouse model of infection. Methods: Three groups of Balb/c mice (female, age 4-6 wk; 21 mice in each group) were infected intravenously with 106 CFU of M. tuberculosis H37Rv and two EMB resistant clinical isolates. Age and sex matched control animals were mock inoculated with Middlebrook 7H9 broth alone. At 10, 20, 30, 40, 50, 60, and 70 days post-infection three animals from each group were sacrificed by cervical dislocation and lung tissue was collected for further analysis. Results: Infection with EMB resistant M. tuberculosis led to progressive and chronic disease with significantly high bacillary load (p=0.02). Massive infiltration and exacerbated lung pathology with increased expression of IFN-γ and TNF-α was observed in lungs of mice infected with EMB resistant strains. The present study suggests that infection with EMB resistant M. tuberculosis leads to chronic infection with subsequent loss of lung function, bacterial persistence with elevated expression of TNF-α resulting in increased lung pathology. Conclusion: These findings highlight that EMB resistant M. tuberculosis regulates host immune response differentially and its pathogenicity is different from drug sensitive strains of M. tuberculosis
    corecore