21 research outputs found

    Candidate gene family-based and case-control studies of susceptibility to high Schistosoma mansoni worm burden in African children: a protocol

    Get PDF
    Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the Th2 and Th17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity. Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components

    Evaluation of the epidemiological situation of intestinal schistosomiasis using the POC-CCA parasite antigen test and the Kato-Katz egg count test in school-age children in endemic villages in western Côte d'Ivoire.

    Get PDF
    Schistosomiasis is an endemic disease in Côte d'Ivoire. We compared the conventional Kato Katz (KK) test and a more sensitive but rarely used method, the point-of-care circulating cathodic antigen (POC-CCA), in order to contribute to the development of a more appropriate strategy for the control and elimination of intestinal schistosomiasis in western Côte d'Ivoire. A cross-sectional epidemiological survey was conducted in eight elementary schools in the Guémon and Cavally regions from February to December 2020. Selected schoolchildren provided stool and urine samples to detect the presence of Schistosoma mansoni eggs and parasite antigen using the KK and POC-CCA tests, respectively. A total of 554 schoolchildren were included in the study. The overall prevalence of intestinal schistosomiasis was 10% and 67% for KK and POC-CCA, respectively. The POC-CCA detected an infection rate of 100%, while the KK yielded a rate of 42%. In schools, prevalence ranged from 27 to 100% with POC-CCA and from 0 to 42% with KK. Swimming, fishing, washing clothes, and dishwashing were significantly associated with the onset of infection and high intensities. The epidemiological risk factors for intestinal schistosomiasis updated here using KK and POC-CCA diagnostic methods showed that prevalence was much higher than previously estimated using the KK. The POC-CCA is more sensitive and ways should be considered to improve its specificity in order to improve the diagnosis

    Impact of environmental factors on Biomphalaria pfeifferi vector capacity leading to human infection by Schistosoma mansoni in two regions of western Côte d'Ivoire.

    Get PDF
    ABSTRACT: BACKGROUND: Intestinal schistosomiasis remains a worrying health problem, particularly in western Côte d'Ivoire, despite control efforts. It is therefore necessary to understand all the factors involved in the development of the disease, including biotic and abiotic factors. The aim of this study was to examine the factors that could support the maintenance of the intermediate host and its vectorial capacity in western Côte d'Ivoire.MethodsData on river physicochemical, microbiological, and climatic parameters, the presence or absence of snails with Schistosoma mansoni, and human infections were collected between January 2020 and February 2021. Spearman rank correlation tests, Mann-Whitney, analysis of variance (ANOVA), and an appropriate model selection procedure were used to analyze the data.ResultsThe overall prevalence of infected snails was 56.05%, with infection reaching 100% in some collection sites and localities. Of 26 sites examined, 25 contained thermophilic coliforms and 22 contained Escherichia coli. Biomphalaria pfeifferi was observed in environments with lower land surface temperature (LST) and higher relative air humidity (RAH), and B. pfeifferi infection predominated in more acidic environments. Thermal coliforms and E. coli preferred higher pH levels. Lower maximum LST (LST_Max) and higher RAH and minimum LST (LST_Min) were favorable to E. coli, and lower LST_Max favored coliforms. The presence of B. pfeifferi was positively influenced by water temperature (T °C), LST_Min, RAH, and precipitation (Pp) (P 2 = 0.879, P = 0.04959).ConclusionsThe results obtained reflect the environmental conditions that are conducive to the maintenance of S. mansoni infection in this part of the country. To combat this infection as effectively as possible, it will be necessary not only to redouble efforts but also to prioritize control according to the level of endemicity at the village level

    High-depth African genomes inform human migration and health

    Get PDF
    The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals—comprising 50 ethnolinguistic groups, including previously unsampled populations—to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon—but in other genes, variants denoted as ‘likely pathogenic’ in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health

    High-depth African genomes inform human migration and health.

    Get PDF
    The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health

    High-depth African genomes inform human migration and health

    Get PDF
    The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals—comprising 50 ethnolinguistic groups, including previously unsampled populations—to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon—but in other genes, variants denoted as ‘likely pathogenic’ in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health

    The Genetics of Human Schistosomiasis Infection Intensity and Liver Disease: A Review.

    Get PDF
    Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies

    Gene expression changes in mammalian hosts during schistosomiasis: a review

    No full text
    Schistosomiasis affects over 250 million people worldwide with an estimated mortality of more than 200,000 deaths per year in sub-Saharan Africa. Efforts to control schistosomiasis in the affected areas have mainly relied on mass administration of praziquantel, which kills adult but not immature worms of all Schistosoma species. Mammalian hosts respond differently to Schistosoma infection with some being more susceptible than others, which is associated with risk factors such as sociodemographic, epidemiological, immunological and/or genetic. Host genetic factors play a major role in influencing molecular processes in response to schistosomiasis as shown in gene expression studies. These studies highlight gene profiles expressed at different time points of infection using model animals. Immune function related genes; cytokines (Th1 and Th17) are upregulated earlier in infection and Th2 upregulated later indicating a mixed Th1/Th2 response. However, Th1 response has been shown to be sustained in S. japonicum infection. Immune mediators such as matrix metalloproteinases (Mmps) and tissue inhibitors of matrix metalloproteinases (Timps) are expressed later in the infection and these are linked to wound healing and fibrosis. Downregulation of metabolic associated genes is recorded in later stages of infection. Most mammalian host gene expression studies have been done using rodent models, with fewer in larger hosts such as bovines and humans. The majority of these studies have focused on S. japonicum infections and less on S. haematobium and S. mansoni infections (the two species that cause most global infections). The few human schistosomiasis gene expression studies so far have focused on S. japonicum and S. haematobium infections and none on S. mansoni, as far as we are aware. This highlights a paucity of gene expression data in humans, specifically with S. mansoni infection. This data is important to understand the disease pathology, identify biomarkers, diagnostics and possible drug targets.</ns3:p

    Candidate gene family-based and case-control studies of susceptibility to high Schistosoma mansoni worm burden in African children: a protocol.

    Get PDF
    Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the T h2 and T h17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity.   Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components
    corecore