16 research outputs found

    Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids

    Full text link
    [EN] The development of antioxidant active packaging systems is attracting considerable attention as one of the preferred emerging technologies for reducing the incidence of lipid peroxidation. This work presents the use of ethylene vinyl alcohol copolymer films containing two natural flavonoids, catechin and quercetin, to reduce the oxidation of food. In a series of experiments, these materials showed their ability to reduce the presence of hydroxyl radicals in the package headspace. Packaging fried peanuts in bags manufactured with these active films resulted in a large reduction in the presence of hexanal, a compound produced during peroxidation of the unsaturated fat in peanuts. The results indicated that the materials actively reduced the presence of radical oxidative species although the antioxidants are not released into the food. On exposing sunflower oil to the films, the peroxide values obtained showed that the films actively protected the oil; because of the higher solubility of quercetin in this food product as well as the higher antioxidant capacity, the samples containing this flavonoid were more efficient. Industrial relevance: Active packaging is receiving considerable attention as an emerging technology that can be used to improve the quality and the stability of food, reducing the direct addition of chemicals and the need for changes in formulation. The results of this study show that it is possible to reduce food oxidation without adding antioxidants to the food. The films obtained can be used to protect any type of food, including dry or fatty products. Copyright (c) 2012 John Wiley & Sons, Ltd.The authors acknowledge the financial support of the Spanish Ministry of Science and Innovation, projects AGL2006-02176, AGL2009-08776 and Fun-C-Food CSD2007-00063, and the C. L-d-D fellowship (FPU programme). Mary Georgina Hardinge provided assistance with English-language editing.López De Dicastillo Bergamo, AC.; Pezo, D.; Nerín, C.; López Carballo, G.; Catalá, R.; Gavara Clemente, R.; Hernandez Muñoz, MP. (2012). Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids. Packaging Technology and Science. 25(8):457-466. https://doi.org/10.1002/pts.992S457466258Martín-Diana, A. B., Rico, D., & Barry-Ryan, C. (2008). Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innovative Food Science & Emerging Technologies, 9(4), 593-603. doi:10.1016/j.ifset.2008.04.001Rooney, M. L. (Ed.). (1995). Active Food Packaging. doi:10.1007/978-1-4615-2175-4López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. doi:10.1081/fri-200033462Moore, M. E., Han, I. Y., Acton, J. C., Ogale, A. A., Barmore, C. R., & Dawson, P. L. (2003). Effects of Antioxidants in Polyethylene Film on Fresh Beef Color. Journal of Food Science, 68(1), 99-104. doi:10.1111/j.1365-2621.2003.tb14122.xMastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10(2), 222-227. doi:10.1016/j.ifset.2008.11.010Nerín, C., Tovar, L., Djenane, D., Camo, J., Salafranca, J., Beltrán, J. A., & Roncalés, P. (2006). Stabilization of Beef Meat by a New Active Packaging Containing Natural Antioxidants. Journal of Agricultural and Food Chemistry, 54(20), 7840-7846. doi:10.1021/jf060775cNerín, C., Tovar, L., & Salafranca, J. (2008). Behaviour of a new antioxidant active film versus oxidizable model compounds. Journal of Food Engineering, 84(2), 313-320. doi:10.1016/j.jfoodeng.2007.05.027Wessling, C., Nielsen, T., Leufvén, A., & Jägerstad, M. (1998). Mobility of α‐tocopherol and BHT in LDPE in contact with fatty food simulants. Food Additives and Contaminants, 15(6), 709-715. doi:10.1080/02652039809374701LaCoste, A., Schaich, K. M., Zumbrunnen, D., & Yam, K. L. (2005). Advancing controlled release packaging through smart blending. Packaging Technology and Science, 18(2), 77-87. doi:10.1002/pts.675Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science & Emerging Technologies, 12(1), 50-55. doi:10.1016/j.ifset.2010.12.006Peltzer, M., Wagner, J., & Jiménez, A. (2009). Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Additives & Contaminants: Part A, 26(6), 938-946. doi:10.1080/02652030802712681Granda-Restrepo, D. M., Soto-Valdez, H., Peralta, E., Troncoso-Rojas, R., Vallejo-Córdoba, B., Gámez-Meza, N., & Graciano-Verdugo, A. Z. (2009). Migration of α-tocopherol from an active multilayer film into whole milk powder. Food Research International, 42(10), 1396-1402. doi:10.1016/j.foodres.2009.07.007Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. A. (2009). Effect of adding citrus waste water, thyme and oregano essential oil on the chemical, physical and sensory characteristics of a bologna sausage. Innovative Food Science & Emerging Technologies, 10(4), 655-660. doi:10.1016/j.ifset.2009.06.001Konsoula, Z., & Liakopoulou-Kyriakides, M. (2010). Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT - Food Science and Technology, 43(9), 1379-1386. doi:10.1016/j.lwt.2010.04.016Yanishlieva, N. V., Marinova, E. M., Gordon, M. H., & Raneva, V. G. (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64(1), 59-66. doi:10.1016/s0308-8146(98)00086-7Pedrielli, P., Pedulli, G. F., & Skibsted, L. H. (2001). Antioxidant Mechanism of Flavonoids. Solvent Effect on Rate Constant for Chain-Breaking Reaction of Quercetin and Epicatechin in Autoxidation of Methyl Linoleate. Journal of Agricultural and Food Chemistry, 49(6), 3034-3040. doi:10.1021/jf010017gBoots, A. W., Haenen, G. R. M. M., & Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology, 585(2-3), 325-337. doi:10.1016/j.ejphar.2008.03.008Garces O Nerin C Beltran JA Roncales P Antioxidant active varnish Patent EP1477519 2004Pekkarinen, S. S., Heinonen, I. M., & Hopia, A. I. (1999). Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. Journal of the Science of Food and Agriculture, 79(4), 499-506. doi:10.1002/(sici)1097-0010(19990315)79:43.0.co;2-uLópez-de-Dicastillo, C., Alonso, J. M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Improving the Antioxidant Protection of Packaged Food by Incorporating Natural Flavonoids into Ethylene−Vinyl Alcohol Copolymer (EVOH) Films. Journal of Agricultural and Food Chemistry, 58(20), 10958-10964. doi:10.1021/jf1022324López-Rubio, A., Lagaron, J. M., Giménez, E., Cava, D., Hernandez-Muñoz, P., Yamamoto, T., & Gavara, R. (2003). Morphological Alterations Induced by Temperature and Humidity in Ethylene−Vinyl Alcohol Copolymers. Macromolecules, 36(25), 9467-9476. doi:10.1021/ma035346jAucejo, S., Catalá, R., & Gavara, R. (2000). Interactions between water and EVOH food packaging films / Interacciones entre el agua y películas de EVOH para el envasado de alimentos. Food Science and Technology International, 6(2), 159-164. doi:10.1177/108201320000600211Aucejo, S., Marco, C., & Gavara, R. (1999). Water effect on the morphology of EVOH copolymers. Journal of Applied Polymer Science, 74(5), 1201-1206. doi:10.1002/(sici)1097-4628(19991031)74:53.0.co;2-8Pezo, D., Salafranca, J., & Nerín, C. (2008). Determination of the antioxidant capacity of active food packagings by in situ gas-phase hydroxyl radical generation and high-performance liquid chromatography–fluorescence detection. Journal of Chromatography A, 1178(1-2), 126-133. doi:10.1016/j.chroma.2007.11.062Pezo, D., Salafranca, J., & Nerín, C. (2006). Design of a method for generation of gas-phase hydroxyl radicals, and use of HPLC with fluorescence detection to assess the antioxidant capacity of natural essential oils. Analytical and Bioanalytical Chemistry, 385(7), 1241-1246. doi:10.1007/s00216-006-0395-4Saran, M., & Summer, K. H. (1999). Assaying for hydroxyl radicals: Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radical Research, 31(5), 429-436. doi:10.1080/10715769900300991Pastorelli, S., Valzacchi, S., Rodriguez, A., & Simoneau, C. (2006). Solid-phase microextraction method for the determination of hexanal in hazelnuts as an indicator of the interaction of active packaging materials with food aroma compounds. Food Additives and Contaminants, 23(11), 1236-1241. doi:10.1080/02652030600778744Han, J. H., Hwang, H.-M., Min, S., & Krochta, J. M. (2008). Coating of Peanuts with Edible Whey Protein Film Containing α-Tocopherol and Ascorbyl Palmitate. Journal of Food Science, 73(8), E349-E355. doi:10.1111/j.1750-3841.2008.00910.xLibrando, V., & Tringali, G. (2005). Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of α-pinene degradation and secondary organic aerosol formation. Journal of Environmental Management, 75(3), 275-282. doi:10.1016/j.jenvman.2005.01.001Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82(2), 291-295. doi:10.1113/expphysiol.1997.sp004024Salmon, R. A., Schiller, C. L., & Harris, G. W. (2004). Evaluation of the Salicylic Acid–Liquid Phase Scrubbing Technique to Monitor Atmospheric Hydroxyl Radicals. Journal of Atmospheric Chemistry, 48(1), 81-104. doi:10.1023/b:joch.0000034516.95400.c3Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. Journal of Physical and Chemical Reference Data, 24(2), 663-677. doi:10.1063/1.555965Higdon, J. V., & Frei, B. (2003). Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1), 89-143. doi:10.1080/10408690390826464Burroni, L. V., Grosso, N. R., & Guzmán, C. A. (1997). Principal Volatile Components of Raw, Roasted, and Fried Argentinean Peanut Flavors. Journal of Agricultural and Food Chemistry, 45(8), 3190-3192. doi:10.1021/jf9700034Wambura, P., & Yang, W. W. (2009). Ultrasonication and Edible Coating Effects on Lipid Oxidation of Roasted Peanuts. Food and Bioprocess Technology, 3(4), 620-628. doi:10.1007/s11947-009-0282-zWilliams, J. E., Duncan, S. E., Williams, R. C., Mallikarjunan, K., Eigel, W. N., & O’Keefe, S. F. (2006). Flavor Fade in Peanuts During Short-term Storage. Journal of Food Science, 71(3), S265-S269. doi:10.1111/j.1365-2621.2006.tb15652.xHuang, S.-W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of .alpha.- and .gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 42(10), 2108-2114. doi:10.1021/jf00046a007JUNG, M. Y., & MIN, D. B. (1990). Effects of ?-, ?-, and ?-Tocopherols on Oxidative Stability of Soybean Oil. Journal of Food Science, 55(5), 1464-1465. doi:10.1111/j.1365-2621.1990.tb03960.xZuta, P. C., Simpson, B. K., Zhao, X., & Leclerc, L. (2007). The effect of α-tocopherol on the oxidation of mackerel oil. Food Chemistry, 100(2), 800-807. doi:10.1016/j.foodchem.2005.11.003Lopez-de-Dicastillo C Balasubramanian A Yam KL Schaich K Characterization of the antioxidant activity of quercetin against lipid oxidation for controlled release packaging IFT Annual Meeting 2009Abou Samra, M., Chedea, V. S., Economou, A., Calokerinos, A., & Kefalas, P. (2011). Antioxidant/prooxidant properties of model phenolic compounds: Part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chemistry, 125(2), 622-629. doi:10.1016/j.foodchem.2010.08.076Martín-Polvillo, M., Márquez-Ruiz, G., & Dobarganes, M. C. (2004). Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. Journal of the American Oil Chemists’ Society, 81(6), 577-583. doi:10.1007/s11746-006-0944-1Roedig-Penman, A., & Gordon, M. H. (1998). Antioxidant properties of myricetin and quercetin in oil and emulsions. Journal of the American Oil Chemists’ Society, 75(2), 169-180. doi:10.1007/s11746-998-0029-4Nwuha, V., Nakajima, M., Tong, J., & Ichikawa, S. (1999). Solubility study of green tea extracts in pure solvents and edible oils. Journal of Food Engineering, 40(3), 161-165. doi:10.1016/s0260-8774(99)00050-

    Extraction and isolation of catechins from tea

    No full text
    Tea is a major source of catechins, which have become well known for their antioxidant potential. Numerous human, animal, and in vitro studies have linked tea catechins with prevention of certain types of cancers, reduction of the risks for obesity, diabetes, and cardiovascular disease, and improvement of the immune system. Tea catechins are widely used in various neutraceuticals, pharmaceuticals, and cosmetics for either enhancing product shelf-life or for enhancing human health. Thus, the demand for catechins has increased considerably. Catechins have been extracted and isolated from tea leaves by numerous methods through several steps including: treatment of the tea leaves, extraction of catechins from teas into solvents, isolation of catechins from other extracted components, and drying the preparations to obtain catechin extracts in a powder form. This paper outlines the physical and chemical properties of the tea catechins and reviews the extraction steps of the various extraction methods, as a basis to improve and further develop the extraction and isolation of the tea catechins
    corecore