4 research outputs found

    Eco-friendly asbestos free brake-pad: Using banana peels

    No full text
    The use of asbestos fibre is being avoided due to its carcinogenic nature that might cause health risks. A new brake pad produced using banana peel waste to replace asbestos and Phenolic resin (phenol formaldehyde), as a binder was investigated. The resin was varying from 5 to 30 wt% with an interval of 5 wt%. Morphology, physical, mechanical and wear properties of the brake pad were studied. The results show that compressive strength, hardness and specific gravity of the produced samples were seen to be increasing with an increase in wt% of resin addition, while oil soak, water soak, wear rate and percentage charred decreased as the wt% of resin increased. Overall samples, containing 25 wt% in uncarbonized banana peels (BUNCp) and 30 wt% in carbonized (BCp) gave better properties. The result of this research indicates that banana peel particles can be effectively used as a replacement for asbestos in brake pad manufacture

    Empirical analysis of limit of desulphurization of iron ore based on multi-factorial process variables

    No full text
    Desulphurization of iron ore was carried out using an oxidant; powdered potassium chlorate (KClO3) of mass-input range (5-12g) and temperature range (500-800°C). The limit of desulphurization was evaluated considering the initial ore sulphur content and removed sulphur concentration. Investigation on the process analysis and mechanism of the desulphurization process revealed that oxygen gas from the decomposition of KClO3 interacted with sulphur through molecular combination within the Gas Evolution Temperature Range (GETR); 375-502°C. Sulphur transformation into vapour within this temperature range was observed to facilitate easy reaction with oxygen gas to form SO2, A limit of desulphurization; 92.22% was experimentally achieved following successful reduction of the initial ore sulphur content to 0.007 % using 12g of KClO3 at a treatment temperature of 800°C. A model was derived and used as a tool for empirical analysis of limit of desulphurization based on treatment temperature, mass-input of KClO3, sulphur loss-sulphur initial ratio. Deviational analysis indicates that the derived model gives best-fit process analysis with a deviation range of just 0.65–8.82%, from experimental results and invariably an operational confidence level range 91.18-99.35%. The deviation range corresponds to limit of desulphurization range: 31.4019-86.6128%, treatment temperature range: 600-800°C, KClO3 mass-input range: 7-12g and range of sulphur loss-sulphur initial ratio: 0.3444-0.5556. Hence, the derived model can exclusive, be significantly and viably operational within these process conditions
    corecore