38 research outputs found

    Prevalence and incrimination of Anopheles fluviatilis species S (Diptera: Culicidae) in a malaria endemic forest area of Chhattisgarh state, central India

    Get PDF
    BACKGROUND: Chhattisgarh state in central India is highly endemic for malaria and contributes about 13% of annually reported malaria cases in the country with predominance of P. falciparum. Entomological investigations were carried out in a tribal forested area of district Bastar located in the southern part of Chhattisgarh state to record the prevalence of sibling species of Anopheles fluviatilis and An. culicifacies complexes. The vector species complexes were investigated at sibling species level for their biology in terms of resting and feeding behavior and malaria transmission potential. METHODS: Indoor resting vector mosquitoes collected during 2010–2011 were identified to sibling species by cytotaxonomy and polymerase chain reaction (PCR) assay. The blood meal source analysis and incrimination studies were done at sibling species level by counter current immunoelectrophoresis and enzyme linked immunosorbent assay (ELISA) respectively. RESULTS: Analysis of sibling species composition revealed predominance of An. fluviatilis species S in the study area, which was found to be highly anthropophagic and rested in human dwellings whereas the sympatric species T was primarily zoophagic. Incrimination studies showed high sporozoite rate in species S, thereby confirming its vectorial efficiency. An. culicifacies was encountered in low numbers and comprised species B and C in almost equal proportion. Both these species were found to be exclusively zoophagic. CONCLUSION: The observations made strongly suggest that species S of Fluviatilis Complex is the principal vector of malaria in certain forest areas of district Bastar, Chhattisgarh state and should be the target species for vector control operation. Vector control strategies based on biological characteristics of Fluviatilis S will lead to substantial decline in malaria incidence in such areas

    Characterization and monitoring of deltamethrin-resistance in Anopheles culicifacies in the presence of a long-lasting insecticide-treated net intervention.

    Get PDF
    BACKGROUND: Deltamethrin-impregnated, long-lasting insecticidal nets (LLINs) were distributed in the study area from November 2014 to January 2015 to evaluate their impact on malaria transmission in the presence of insecticide-resistant vectors. Studies were carried out in 16 selected clusters in Keshkal sub-district, Chhattisgarh State, India to monitor and characterize deltamethrin resistance in Anopheles culicifacies sensu lato. RESULTS: Deltamethrin susceptibility of An. culicifacies decreased in a post-LLIN survey compared to a pre-LLIN survey and was not significant (p > 0.05) while, the knockdown values showed significant increase (p < 0.05). Pre-exposure to piperonyl butoxide, triphenyl phosphate showed synergism against deltamethrin (p < 0.001). Biochemical assays showed significantly (p < 0.05) elevated monooxygenases in 3 of 5 clusters in post-LLIN survey-I that increased to 10 of 11 clusters in post-LLIN survey-II, while esterases were found significantly elevated in all clusters and both enzymes were involved in conferring pyrethroid resistance, not discounting the involvement of kdr (L1014L/S) gene that was heterozygous and at low frequency (4-5%). CONCLUSION: This field study, in a tribal district of India, after distribution of deltamethrin-impregnated LLINs showed decrease in deltamethrin susceptibility in An. culicifacies, a major vector of malaria in this study area and in India. Results indicated development of resistance as imminent with the increase in insecticide selection pressure. There is an urgent need to develop new vector control tools, with insecticide classes having novel mechanisms of resistance, to avoid or delay the onset of resistance. Regular insecticide resistance monitoring and mechanistic studies should be the priority for the malaria control programmes to suggest strategies for insecticide resistance management. The global commitment to eliminate malaria by 2030 needs various efforts that include development of combination vector control products and interventions and few are becoming available

    Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular techniques have facilitated the studies on genetic diversity of <it>Plasmodium </it>species particularly from field isolates collected directly from patients. The <it>msp-1 </it>and <it>msp-2 </it>are highly polymorphic markers and the large allelic polymorphism has been reported in the block 2 of the <it>msp-1 </it>gene and the central repetitive domain (block3) of the <it>msp-2 </it>gene. Families differing in nucleotide sequences and in number of repetitive sequences (length variation) were used for genotyping purposes. As limited reports are available on the genetic diversity existing among <it>Plasmodium falciparum </it>population of India, this report evaluates the extent of genetic diversity in the field isolates of <it>P. falciparum </it>in eastern and north-eastern regions of India.</p> <p>Methods</p> <p>A study was designed to assess the diversity of <it>msp-1 </it>and <it>msp-2 </it>among the field isolates from India using allele specific nested PCR assays and sequence analysis. Field isolates were collected from five sites distributed in three states namely, Assam, West Bengal and Orissa.</p> <p>Results</p> <p><it>P. falciparum </it>isolates of the study sites are highly diverse in respect of length as well as sequence motifs with prevalence of all the reported allelic families of <it>msp-1 </it>and <it>msp-2</it>. Prevalence of identical allelic composition as well as high level of sequence identity of alleles suggest a considerable amount of gene flow between the <it>P. falciparum </it>populations of different states. A comparatively higher proportion of multiclonal isolates as well as multiplicity of infection (MOI) was observed among isolates of highly malarious districts Karbi Anglong (Assam) and Sundergarh (Orissa). In all the five sites, R033 family of <it>msp-1 </it>was observed to be monomorphic with an allele size of 150/160 bp. The observed 80–90% sequence identity of Indian isolates with data of other regions suggests that Indian <it>P. falciparum </it>population is a mixture of different strains.</p> <p>Conclusion</p> <p>The present study shows that the field isolates of eastern and north-eastern regions of India are highly diverse in respect of <it>msp-1 </it>(block 2) and <it>msp-2 </it>(central repeat region, block 3). As expected Indian isolates present a picture of diversity closer to southeast Asia, Papua New Guinea and Latin American countries, regions with low to meso-endemicity of malaria in comparison to African regions of hyper- to holo-endemicity.</p

    Malaria transmission in Tripura: Disease distribution & determinants

    No full text
    Background & objectives: Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The s0 tate is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Methods: Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. Results: The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. Interpretation & conclusions: For effective control of malaria in the s0 tate, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to avert impending disease outbreaks and spread of drug-resistant malaria

    Genetic structure of Plasmodium vivax isolates in India

    No full text
    Variations in the allelic composition of glucose phosphate isomerase (GPI), NADP-dependent glutamate dehydrogenase (GDH) and adenosine deaminase (ADA) enzyme systems of Plasmodium vivax were observed in isolates of Indian origin in 1985-1993. No significant difference was observed in allelic frequencies in different years. The data indicated random distribution of GPI, GDH and ADA alleles among the isolates, suggesting that loci for these enzymes were not linked. A high proportion of the isolates comprised at least 2 genetically distinct clones, the mean number of clones per isolate being 1.4. There was no significant difference in the number of oocysts in Anopheles stephensi fed on uniclonal and multiclonal isolates. No difference was observed in the proportions of uniclonal and multiclonal isolates during low and high transmission periods

    Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    Get PDF
    BACKGROUND: Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. CONCLUSIONS/SIGNIFICANCE: We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies

    Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a Malaria Endemic Region in Madhya Pradesh State, Central India.

    No full text
    This study was undertaken in two Primary Health Centers (PHCs) of malaria endemic district Jabalpur in Madhya Pradesh (Central India).In this study we had investigated the relative frequencies of the different anopheline species collected within the study areas by using indoor resting catches, CDC light trap and human landing methods. Sibling species of malaria vectors were identified by cytogenetic and molecular techniques. The role of each vector and its sibling species in the transmission of the different Plasmodium species was ascertained by using sporozoite ELISA.A total of 52,857 specimens comprising of 17 anopheline species were collected by three different methods (39,964 by indoor resting collections, 1059 by human landing and 11,834 by CDC light trap). Anopheles culicifacies was most predominant species in all collections (55, 71 and 32% in indoor resting, human landing and light trap collections respectively) followed by An. subpictus and An. annularis. All five sibling species of An. culicifacies viz. species A, B, C, D and E were found while only species T and S of An. fluviatilis were collected. The overall sporozoite rate in An. culicifacies and An. fluviatilis were 0.42% (0.25% for P. falciparum and 0.17% for P. vivax) and 0.90% (0.45% for P. falciparum and 0.45% for P. vivax) respectively. An. culicifacies and An. fluviatilis were found harbouring both P. vivax variants VK-210 and VK-247, and P. falciparum. An. culicifacies sibling species C and D were incriminated as vectors during most part of the year while sibling species T of An. fluviatilis was identified as potential vector in monsoon and post monsoon season.An. culicifacies species C (59%) was the most abundant species followed by An. culicifacies D (24%), B (8.7%), E (6.7%) and A (1.5%). Among An. fluviatilis sibling species, species T was common (99%) and only few specimens of S were found. Our study provides crucial information on the prevalence of An. culicifacies and An. fluviatilis sibling species and their potential in malaria transmission which will assist in developing strategic control measures against these vectors
    corecore