12 research outputs found
Age‐specific impacts of vegetation functional traits on gastrointestinal nematode parasite burdens in a large herbivore
Gastrointestinal nematode (GIN) parasites play an important role in the ecological dynamics of many animal populations. Recent studies suggest that fine-scale spatial variation in GIN infection dynamics is important in wildlife systems, but the environmental drivers underlying this variation remain poorly understood.
We used data from over two decades of GIN parasite egg counts, host space use, and spatial vegetation data from a long-term study of Soay sheep on St Kilda to test how spatial autocorrelation and vegetation in an individual's home range predict parasite burden across three age groups. We developed a novel approach to quantify the plant functional traits present in a home range to describe the quality of vegetation present.
Effects of vegetation and space varied between age classes. In immature lambs, strongyle parasite faecal egg counts (FEC) were spatially structured, being highest in the north and south of our study area. Independent of host body weight and spatial autocorrelation, plant functional traits predicted parasite egg counts. Higher egg counts were associated with more digestible and preferred plant functional traits, suggesting the association could be driven by host density and habitat preference.
In contrast, we found no evidence that parasite FEC were related to plant functional traits in the host home range in yearlings or adult sheep. Adult FEC were spatially structured, with highest burdens in the north-east of our study area, while yearling FEC showed no evidence of spatial structuring.
Parasite burdens in immature individuals appear more readily influenced by fine-scale spatial variation in the environment, highlighting the importance of such heterogeneity for our understanding of wildlife epidemiology and health. Our findings support the importance of fine-scale environmental variation for wildlife disease ecology and provides new evidence that such effects may vary across demographic groups within a population
Detecting context dependence in the expression of life history trade‐offs
Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations.
One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence.
Here, we present a hierarchical multivariate ‘covariance reaction norm’ model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs.
We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments.
We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general
Host resources and parasite traits interact to determine the optimal combination of host parasite‐mitigation strategies
Organisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites or tolerate infection by repairing associated damage. The effectiveness of a strategy depends on interactions between, for example, resource availability, parasite traits (virulence, life‐history) and the host itself (nutritional status, immunopathology). To understand how these factors shape host parasite‐mitigation strategies, we developed a mathematical model of within‐host, parasite‐immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non‐immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite‐mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance.Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show that the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems
No correlative evidence of costs of infection or immunity on leucocyte telomere length in a wild population of Soay sheep
Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response
Selection on heritable phenotypic plasticity in a wild bird population
Theoretical and laboratory research suggests that phenotypic plasticity can evolve under selection. However, evidence for its evolutionary potential from the wild is lacking. We present evidence from a Dutch population of great tits (Parus major) for variation in individual plasticity in the timing of reproduction, and we show that this variation is heritable. Selection favoring highly plastic individuals has intensified over a 32-year period. This temporal trend is concurrent with climate change causing a mismatch between the breeding times of the birds and their caterpillar prey. Continued selection on plasticity can act to alleviate this mismatch.
Oxidative damage, ageing, and life-history evolution: where now?
The idea that resources are limited and animals can maximise fitness by trading costly activities off against one another forms the basis of life-history theory. Although investment in reproduction or growth negatively affects survival, the mechanisms underlying such trade-offs remain obscure. One plausible mechanism is oxidative damage to proteins, lipids, and nucleic acids caused by reactive oxygen species (ROS). Here, we critically evaluate the premise that ROS-induced oxidative damage shapes life history, focussing on birds and mammals, and highlight the importance of ecological studies examining free-living animals within this experimental framework. We conclude by emphasising the value of using multiple assays to determine oxidative protection and damage. We also highlight the importance of using standardised and appropriate protocols, and discuss future research directions