936 research outputs found

    Patterns for service-oriented information exchange requirements

    Get PDF
    Service-Oriented Computing (SOC) is an emerging computing paradigm that supports loosely-coupled inter-enterprise interactions. SOC interactions are predominantly specified in a procedural manner that defines message sequences intermixing implementation with business requirements. In this paper we present a set of patterns concerning requirements of information exchange between participants engaging in service-oriented interactions. The patterns aim at explicating and elaborating the business requirements driving the interaction and separating them from implementation concerns

    Using Problem Frames and projections to analyze requirements for distributed systems

    Get PDF
    Subproblems in a problem frames decomposition frequently make use of projections of the complete problem context. One specific use of projec-tions occurs when an eventual implementation will be distributed, in which case a subproblem must interact with (use) the machine in a projection that represents another subproblem. We refer to subproblems used in this way as services, and propose an extension to projections to represent services as a spe-cial connection domain between subproblems. The extension provides signifi-cant benefits: verification of the symmetry of the interfaces, exposure of the machine-to-machine interactions, and prevention of accidental introduction of shared state. The extension’s usefulness is validated using a case study

    The conundrum of categorising requirements: managing requirements for learning on the move

    Get PDF
    This paper reports on the experience of eliciting and managing requirements on a large European-based multinational project, whose purpose is to create a system to support learning using mobile technology. The project used the socio-cognitive engineering methodology for human-centered design and the Volere shell and template to document requirements. We provide details about the project below, describe the Volere tools, and explain how and why we used a flexible categorization scheme to manage the requirements. Finally, we discuss three lessons learned: (1) provide a flexible mechanism for organizing requirements, (2) plan ahead for the RE process, and (3) do not forget 'the waiting room

    Fine-grain process modelling

    Get PDF
    In this paper, we propose the use of fine-grain process modelling as an aid to software development. We suggest the use of two levels of granularity, one at the level of the individual developer and another at the level of the representation scheme used by that developer. The advantages of modelling the software development process at these two levels, we argue, include respectively: (1) the production of models that better reflect actual development processes because they are oriented towards the actors who enact them, and (2) models that are vehicles for providing guidance because they may be expressed in terms of the actual representation schemes employed by those actors. We suggest that our previously published approach of using multiple “ViewPoints” to model software development participants, the perspectives that they hold, the representation schemes that they deploy and the process models that they maintain, is one way of supporting the fine-grain modelling we advocate. We point to some simple, tool-based experiments we have performed that support our proposition

    Arguing security: validating security requirements using structured argumentation

    Get PDF
    This paper proposes using both formal and structured informal arguments to show that an eventual realized system can satisfy its security requirements. These arguments, called 'satisfaction arguments', consist of two parts: a formal argument based upon claims about domain properties, and a set of informal arguments that justify the claims. Building on our earlier work on trust assumptions and security requirements, we show how using satisfaction arguments assists in clarifying how a system satisfies its security requirements, in the process identifying those properties of domains that are critical to the requirements

    A framework for security requirements engineering

    Get PDF
    This paper presents a framework for security requirements elicitation and analysis, based upon the construction of a context for the system and satisfaction arguments for the security of the system. One starts with enumeration of security goals based on assets in the system. These goals are used to derive security requirements in the form of constraints. The system context is described using a problem-centered notation, then this context is validated against the security requirements through construction of a satisfaction argument. The satisfaction argument is in two parts: a formal argument that the system can meet its security requirements, and a structured informal argument supporting the assumptions expressed in the formal argument. The construction of the satisfaction argument may fail, revealing either that the security requirement cannot be satisfied in the context, or that the context does not contain sufficient information to develop the argument. In this case, designers and architects are asked to provide additional design information to resolve the problems

    On presuppositions in requirements

    Get PDF
    corecore