8 research outputs found

    Structure–function analysis of hepatitis C virus envelope glycoproteins E1 and E2

    No full text
    <div><p>Hepatitis C virus (HCV) is the leading cause of chronic liver disease in humans. The envelope proteins of HCV are potential candidates for vaccine development. The absence of three-dimensional (3D) structures for the functional domain of HCV envelope proteins [E1.E2] monomer complex has hindered overall understanding of the virus infection, and also structure-based drug design initiatives. In this study, we report a 3D model containing both E1 and E2 proteins of HCV using the recently published structure of the core domain of HCV E2 and the functional part of E1, and investigate immunogenic implications of the model. HCV [E1.E2] molecule is modeled by using aa205–319 of E1 to aa421–716 of E2. Published experimental data were used to further refine the [E1.E2] model. Based on the model, we predict 77 exposed residues and several antigenic sites within the [E1.E2] that could serve as vaccine epitopes. This study identifies eight peptides which have antigenic propensity and have two or more sequentially exposed amino acids and 12 singular sites are under negative selection pressure that can serve as vaccine or therapeutic targets. Our special interest is <sub>285</sub>FLVGQLFTFSPRRHW<sub>299</sub> which has five negatively selected sites (L286, V287, G288, T292, and G303) with three of them sequential and four amino acids exposed (F285, L286, T292, and R296). This peptide in the E1 protein maps to dengue envelope vaccine target identified previously by our group. Our model provides for the first time an overall view of both the HCV envelope proteins thereby allowing researchers explore structure-based drug design approaches.</p></div

    Identification of skewed X chromosome inactivation using exome and transcriptome sequencing in patients with suspected rare genetic disease

    No full text
    Abstract Background X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10–20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. Results In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. Conclusions This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease

    LPCAT1-TERT fusions are uniquely recurrent in epithelioid trophoblastic tumors and positively regulate cell growth.

    No full text
    Gestational trophoblastic disease (GTD) is a heterogeneous group of lesions arising from placental tissue. Epithelioid trophoblastic tumor (ETT), derived from chorionic-type trophoblast, is the rarest form of GTD with only approximately 130 cases described in the literature. Due to its morphologic mimicry of epithelioid smooth muscle tumors and carcinoma, ETT can be misdiagnosed. To date, molecular characterization of ETTs is lacking. Furthermore, ETT is difficult to treat when disease spreads beyond the uterus. Here using RNA-Seq analysis in a cohort of ETTs and other gestational trophoblastic lesions we describe the discovery of LPCAT1-TERT fusion transcripts that occur in ETTs and coincide with underlying genomic deletions. Through cell-growth assays we demonstrate that LPCAT1-TERT fusion proteins can positively modulate cell proliferation and therefore may represent future treatment targets. Furthermore, we demonstrate that TERT upregulation appears to be a characteristic of ETTs, even in the absence of LPCAT1-TERT fusions, and that it appears linked to copy number gains of chromosome 5. No evidence of TERT upregulation was identified in other trophoblastic lesions tested, including placental site trophoblastic tumors and placental site nodules, which are thought to be the benign chorionic-type trophoblast counterpart to ETT. These findings indicate that LPCAT1-TERT fusions and copy-number driven TERT activation may represent novel markers for ETT, with the potential to improve the diagnosis, treatment, and outcome for women with this rare form of GTD
    corecore