50 research outputs found

    Sleidinge - Wurmstraat. Archeologisch onderzoek - juli 2016.

    Get PDF
    Dit rapport werd ingediend bij het agentschap samen met een aantal afzonderlijke digitale bijlagen. Een aantal van deze bijlagen zijn niet inbegrepen in dit pdf document en zijn niet online beschikbaar. Sommige bijlagen (grondplannen, fotos, spoorbeschrijvingen, enz.) kunnen van belang zijn voor een betere lezing en interpretatie van dit rapport. Indien u deze bijlagen wenst te raadplegen kan u daarvoor contact opnemen met: [email protected]

    Early and non-intrusive lameness detection in dairy cows using 3-dimensional video

    Get PDF
    ABSTRACTLameness is a major issue in dairy herds and its early and automated detection offers animal welfare benefits together with high potential commercial savings for farmers. Current advancements in automated detection have not achieved a sensitive measure for classifying early lameness. A novel proxy for lameness using 3-dimensional (3D) depth video data to analyse the animal’s gait asymmetry is introduced. This dynamic proxy is derived from the height variations in the hip joint during walking. The video capture setup is completely covert and it facilitates an automated process. The animals are recorded using an overhead 3D depth camera as they walk freely in single file after the milking session. A 3D depth image of the cow’s body is used to automatically track key regions such as the hooks and the spine. The height movements are calculated from these regions to form the locomotion signals of this study, which are analysed using a Hilbert transform. Our results using a 1-5 locomotion scoring (LS) system on 22 Holstein Friesian dairy cows, a threshold could be identified between LS 1 and 2 (and above). This boundary is important as it represents the earliest point in time at which a cow is considered lame, and its early detection could improve intervention outcome thereby minimising losses and reducing animal suffering. Using a linear Support Vector Machine (SVM) binary classification model, the threshold achieved an accuracy of 95.7% with a 100% sensitivity (detecting lame cows) and 75% specificity (detecting non-lame cows)

    Multivariate analysis of 3D ToF-SIMS images: method validation and application to cultured neuronal networks

    Get PDF
    Advanced data analysis tools are crucial for the application of ToF-SIMS analysis to biological samples. Here, we demonstrate that by using a training set approach principal components analysis (PCA) can be performed on large 3D ToF-SIMS images of neuronal cell cultures. The method readily provides access to sample component information and significantly improves the images’ signal-to-noise ratio (SNR)

    Sensor data classification for the indication of lameness in sheep

    Get PDF
    Lameness is a vital welfare issue in most sheep farming countries, including the UK. The pre-detection at the farm level could prevent the disease from becoming chronic. The development of wearable sensor technologies enables the idea of remotely monitoring the changes in animal movements which relate to lameness. In this study, 3D-acceleration, 3D-orientation, and 3D-linear acceleration sensor data were recorded at ten samples per second via the sensor attached to sheep neck collar. This research aimed to determine the best accuracy among various supervised machine learning techniques which can predict the early signs of lameness while the sheep are walking on a flat field. The most influencing predictors for lameness indication were also addressed here. The experimental results revealed that the Decision Tree classifier has the highest accuracy of 75.46%, and the orientation sensor data (angles) around the neck are the strongest predictors to differentiate among severely lame, mildly lame and sound classes of sheep

    Sensor data classification for the indication of lameness in sheep

    Get PDF
    Lameness is a vital welfare issue in most sheep farming countries, including the UK. The pre-detection at the farm level could prevent the disease from becoming chronic. The development of wearable sensor technologies enables the idea of remotely monitoring the changes in animal movements which relate to lameness. In this study, 3D-acceleration, 3D-orientation, and 3D-linear acceleration sensor data were recorded at ten samples per second via the sensor attached to sheep neck collar. This research aimed to determine the best accuracy among various supervised machine learning techniques which can predict the early signs of lameness while the sheep are walking on a flat field. The most influencing predictors for lameness indication were also addressed here. The experimental results revealed that the Decision Tree classifier has the highest accuracy of 75.46%, and the orientation sensor data (angles) around the neck are the strongest predictors to differentiate among severely lame, mildly lame and sound classes of sheep
    corecore