432 research outputs found

    A Biometric Model for Mineralization of Type-I Collagen Fibrils

    Get PDF
    The bone and dentin mainly consist of type-I collagen fibrils mineralized by hydroxyapatite (HAP) nanocrystals. In vitro biomimetic models based on self-assembled collagen fibrils have been widely used in studying the mineralization mechanism of type-I collagen. In this chapter, the protocol we used to build a biomimetic model for the mechanistic study of type-I collagen mineralization is described. Type-I collagen extracted from rat tail tendon or horse tendon is self-assembled into fibrils and mineralized by HAP in vitro. The mineralization process is monitored by cryoTEM in combination with two-dimensional (2D) and three-dimensional (3D) stochastic optical reconstruction microscopy (STORM), which enables in situ and high-resolution visualization of the process

    Controlling Internal Pore Sizes in Bicontinuous Polymeric Nanospheres

    Get PDF
    Complex polymeric nanospheres were formed in water from comb-like amphiphilic block copolymers. Their internal morphology was determined by three-dimensional cryo-electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17?kDa and hydrophilic weight fractions of ?0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460?nm. Significantly, altering the block copolymer hydrophilic–hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19?nm

    MOCCASIN: converting MATLAB ODE models to SBML

    Get PDF
    MATLAB is popular in biological research for creating and simulating models that use ordinary differential equations (ODEs). However, sharing or using these models outside of MATLAB is often problematic. A community standard such as Systems Biology Markup Language (SBML) can serve as a neutral exchange format, but translating models from MATLAB to SBML can be challenging—especially for legacy models not written with translation in mind. We developed MOCCASIN (Model ODE Converter for Creating Automated SBML INteroperability) to help. MOCCASIN can convert ODE-based MATLAB models of biochemical reaction networks into the SBML format

    A classical view on nonclassical nucleation

    Get PDF
    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO_{3}) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO_{3} nucleation is still a topic of intense discussion, with new pathways for its growth from ions in solution proposed in recent years. These new pathways include the so-called nonclassical nucleation mechanism via the assembly of thermodynamically stable prenucleation clusters, as well as the formation of a dense liquid precursor phase via liquid–liquid phase separation. Here, we present results from a combined experimental and computational investigation on the precipitation of CaCO_{3} in dilute aqueous solutions. We propose that a dense liquid phase (containing 4–7 H_{2}O per CaCO_{3} unit) forms in supersaturated solutions through the association of ions and ion pairs without significant participation of larger ion clusters. This liquid acts as the precursor for the formation of solid CaCO_{3} in the form of vaterite, which grows via a net transfer of ions from solution according to z Ca^{2+} + zCO_{3}^{2−} → z CaCO_{3}. The results show that all steps in this process can be explained according to classical concepts of crystal nucleation and growth, and that long-standing physical concepts of nucleation can describe multistep, multiphase growth mechanisms

    A natural biogenic fluorapatite as a new biomaterial for orthopedics and dentistry: antibacterial activity of lingula seashell and its use for nanostructured biomimetic coatings

    Get PDF
    Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.Lingula anatina seashell is an apatite-based shells, and naturally contains fluorine and zinc alongside an organic part (chitin). For the first time, we demonstrate that it has strong antibacterial properties, and that it can be used as nanostructured coatings for orthopaedics and dentistry

    Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model

    Get PDF
    Thirty-five percent of patients with Rett syndrome carry nonsense mutations in the MECP2 gene. We have recently shown in transfected HeLa cells that readthrough of nonsense mutations in the MECP2 gene can be achieved by treatment with gentamicin and geneticin. This study was performed to test if readthrough can also be achieved in cells endogenously expressing mutant MeCP2 and to evaluate potentially more effective readthrough compounds. A mouse model was generated carrying the R168X mutation in the MECP2 gene. Transfected HeLa cells expressing mutated MeCP2 fusion proteins and mouse ear fibroblasts isolated from the new mouse model were treated with gentamicin and the novel aminoglycosides NB30, NB54, and NB84. The localization of the readthrough product was tested by immunofluorescence. Readthrough of the R168X mutation in mouse ear fibroblasts using gentamicin was detected but at lower level than in HeLa cells. As expected, the readthrough product, full-length Mecp2 protein, was located in the nucleus. NB54 and NB84 induced readthrough more effectively than gentamicin, while NB30 was less effective. Readthrough of nonsense mutations can be achieved not only in transfected HeLa cells but also in fibroblasts of the newly generated Mecp2R168X mouse model. NB54 and NB84 were more effective than gentamicin and are therefore promising candidates for readthrough therapy in Rett syndrome patients

    Telomere length associations with cognition depend on Alzheimer's disease biomarkers

    Get PDF
    Introduction While telomere shortening, a marker of cellular aging, may impact the progression of age‐related neurodegenerative diseases, its association with cognition is unclear, particularly in the context of Alzheimer's disease (AD) pathology. Methods Telomere, cognitive, and CSF data from 482 participants in the AD Neuroimaging Initiative (148 cognitively normal, 283 mild cognitive impairment, 51 AD) was leveraged to assess telomere length associations with cognition (measured by memory and executive function) and interactions with CSF amyloid‐β, tau, and APOE‐ε4. Secondary analyses assessed brain volume and thickness outcomes. Results Longer telomeres at baseline were associated with faster executive function decline. Amyloid‐β and tau interacted with telomere length on cognition, with longer telomeres related to faster decline among biomarker‐positive individuals. Discussion Telomere associations with cognition shift with AD progression, with longer telomeres related to worse outcomes as pathology increases, highlighting the need for further investigation of telomere length along the AD neuropathological cascade

    Glucose-6-phosphate dehydrogenase deficiency with recurrent infections: case report

    Get PDF
    OBJECTIVE: To report a case of rare neutrophil functional disorder with clinical and laboratory findings similar to those of chronic granulomatous disease. METHODS: Patient with extremely reduced level of glucose-6-phosphate dehydrogenase and recurrent infections that improved after continuous use of cotrimoxazole. The patient presented leukocytes with defective respiratory burst, similar to what occurs in chronic granulomatous disease. COMMENTS: The diagnosis of glucose-6-phosphate dehydrogenase deficiency in neutrophils should be considered in any patient with hemolytic anemia whose level of G6PD is extremely low or in any patient that presents recurrent infections as differential diagnosis of chronic granulomatous disease.OBJETIVO: relatar a ocorrência de uma deficiência funcional de neutrófilos rara, com quadro clínico e laboratorial semelhante ao da doença granulomatosa crônica. MÉTODOS: relato de caso de paciente com deficiência acentuada da glicose-6-fosfato desidrogenase e infecções de repetição. Realizada pesquisa bibliográfica utilizando as bases de dados Medline e Lilacs, abrangendo o período de 1972 a 2000. RESULTADOS: paciente com nível da glicose-6-fosfato desidrogenase extremamente reduzido e quadro de infeções graves com melhora clínica após uso de cotrimoxazol contínuo. Os leucócitos do paciente apresentam defeito no metabolismo oxidativo, similar ao da doença granulomatosa crônica. CONCLUSÕES: o diagnóstico da deficiência da glicose-6-fosfato desidrogenase em neutrófilos deve ser considerado em qualquer paciente com anemia hemolítica não esferocítica congênita no qual o nível da glicose-6-fosfato desidrogenase esteja anormalmente baixo ou apresente infeções de repetição. É diagnóstico diferencial da doença granulomatosa crônica.Univ. Federal de São Paulo Depto. de Pediatria Disc. de Alergia, Imunologia ClínicaUniv. Federal do Rio de Janeiro Fac. de Medicina Depto. de Medicina PreventivaUNICAMP Faculdade de Ciências Médicas Depto. de PediatriaUniv. de São Paulo Fac. de MedicinaUNIFESP-EPM Depto. de PediatriaUSP Instituto de Ciências Biomédicas Depto. de ImunologiaUFRJ Fac. Med. Depto. de Medicina PreventivaUFRJ Fac. de Medicina Depto. de PediatriaUNIFESP, EPM, Depto. de PediatriaSciEL
    corecore