93 research outputs found

    Magnetic fields in massive spirals: The role of feedback and initial conditions

    Full text link
    Magnetic fields play a very important role in the evolution of galaxies through their direct impact on star formation and stellar feedback-induced turbulence. However, their co-evolution with these processes has still not been thoroughly investigated, and the possible effect of the initial conditions is largely unknown. This letter presents the first results from a series of high-resolution numerical models, aimed at deciphering the effect of the initial conditions and of stellar feedback on the evolution of the galactic magnetic field in isolated, Milky-Way-like galaxies. The models start with an ordered, either poloidal or toroidal, magnetic field of varying strength, and are evolved with and without supernova feedback. They include a dark matter halo, a stellar and a gaseous disk, as well as the appropriate cooling and heating processes for the interstellar medium. Independently of the initial conditions, the galaxies develop a turbulent velocity field and a random magnetic field component in under 15 Myrs. Supernova feedback is extremely efficient in building a random magnetic field component up to large galactic heights. However, a random magnetic field emerges even in runs without feedback, which points to an inherent instability of the ordered component. Supernova feedback greatly affects the velocity field of the galaxy up to large galactic heights, and helps restructure the magnetic field up to 10 kpc above the disk, independently of the initial magnetic field morphology. On the other hand, the initial morphology of the magnetic field can accelerate the development of a random component at large heights. These effects have important implications for the study of the magnetic field evolution in galaxy simulations.Comment: A&A Letters, accepte

    The effect of ambipolar diffusion on low-density molecular ISM filaments

    Full text link
    The filamentary structure of the molecular interstellar medium and the potential link of this morphology to star formation have been brought into focus recently by high resolution observational surveys. An especially puzzling matter is that local interstellar filaments appear to have the same thickness, independent of their column density. This requires a theoretical understanding of their formation process and the physics that governs their evolution. In this work we explore a scenario in which filaments are dissipative structures of the large-scale interstellar turbulence cascade and ion-neutral friction (also called ambipolar diffusion) is affecting their sizes by preventing small-scale compressions. We employ high-resolution, 3D MHD simulations, performed with the grid code RAMSES, to investigate non-ideal MHD turbulence as a filament formation mechanism. We focus the analysis on the mass and thickness distributions of the resulting filamentary structures. Simulations of both driven and decaying MHD turbulence show that the morphologies of the density and the magnetic field are different when ambipolar diffusion is included in the models. In particular, the densest structures are broader and more massive as an effect of ion-neutral friction and the power spectra of both the velocity and the density steepen at a smaller wavenumber. The comparison between ideal and non-ideal MHD simulations shows that ambipolar diffusion causes a shift of the filament thickness distribution towards higher values. However, none of the distributions exhibit the pronounced peak found in the observed local filaments. Limitations in dynamical range and the absence of self-gravity in these numerical experiments do not allow us to conclude at this time whether this is due to the different filament selection or due to the physics inherent of the filament formation.Comment: A&A accepte

    Formation of cold gas filaments from colliding superbubbles

    Get PDF

    Galactic Dynamos

    Full text link
    Spiral galaxies, including the Milky Way, have large-scale magnetic fields with significant energy densities. The dominant theory attributes these magnetic fields to a large-scale dynamo. We review the current status of dynamo theory and discuss various numerical simulations designed to explain either particular aspects of the problem or to reproduce galactic magnetic fields globally. Our main conclusions can be summarized as follows. (i) Idealized direct numerical simulations produce mean magnetic fields, whose saturation energy density tends to decline with increasing magnetic Reynolds number. This could imply that the observed large-scale galactic magnetic fields might not entirely originate from a mean-field dynamo. Much of the current numerical effort is focused on this unsolved problem. (ii) Small-scale dynamos are important throughout a galaxy's life, and probably provide strong seed fields at early stages. (iii) Large-scale galactic magnetic fields of microGauss strengths can probably only be explained if helical magnetic fields of small or moderate length scales can rapidly be ejected or destroyed. (iv) The circumgalactic medium (CGM) may play an important role in driving dynamo action at small and large length scales. These interactions between the galactic disk and the CGM may be a key aspect in understanding galactic dynamos. We expect future research in galactic dynamos to focus on the cosmological history of galaxies and the interaction with the CGM as means of replacing the idealized boundary conditions used in earlier work.Comment: 46 pages, 15 figures, 4 tables, comments welcome

    Shell instability of a collapsing dense core

    Get PDF
    Understanding the formation of binary and multiple stellar systems largely comes down to studying the circumstances for the fragmentation of a condensing core during the first stages of the collapse. However, the probability of fragmentation and the number of fragments seem to be determined to a large degree by the initial conditions. In this work we study the fate of the linear perturbations of a homogeneous gas sphere both analytically and numerically. In particular, we investigate the stability of the well-known homologous solution that describes the collapse of a uniform spherical cloud. The difficulty of the mathematical singularity in the perturbation equations is surpassed here by explicitly introducing a weak shock next to the sonic point. In parallel, we perform adaptive mesh refinement (AMR) numerical simulations of the linear stages of the collapse and compared the growth rates obtained by each method. With this combination of analytical and numerical tools, we explore the behavior of both spherically symmetric and non-axisymmetric perturbations. The numerical experiments provide the linear growth rates as a function of the core's initial virial parameter and as a function of the azimuthal wave number of the perturbation. The overlapping regime of the numerical experiments and the analytical predictions is the situation of a cold and large cloud, and in this regime the analytically calculated growth rates agree very well with the ones obtained from the simulations. The use of a weak shock as part of the perturbation allows us to find a physically acceptable solution to the equations for a continuous range of growth rates. The numerical simulations agree very well with the analytical prediction for the most unstable cores, while they impose a limit of a virial parameter of 0.1 for core fragmentation in the absence of rotation.Comment: Accepted by A&

    A dynamo amplifies the magnetic field of a Milky-Way-like galaxy

    Full text link
    The magnetic fields of spiral galaxies are so strong that they cannot be primordial. Their typical values are over one billion times higher than any value predicted for the early Universe. Explaining this immense growth and incorporating it in galaxy evolution theories is one of the long-standing challenges in astrophysics. So far, the most successful theory for the sustained growth of the galactic magnetic field is the alpha-omega dynamo. This theory predicts a characteristic dipolar or quadrupolar morphology for the galactic magnetic field, which has been observed in external galaxies. However, so far, there has been no direct demonstration of a mean-field dynamo operating in direct, multi-physics simulations of spiral galaxies. We do so in this work. We employ numerical models of isolated, star-forming spiral galaxies that include a magnetized gaseous disk, a dark matter halo, stars, and stellar feedback. Naturally, the resulting magnetic field has a complex morphology that includes a strong random component. Using a smoothing of the magnetic field on small scales, we are able to separate the mean from the turbulent component and analyze them individually. We find that a mean-field dynamo naturally occurs as a result of the dynamical evolution of the galaxy and amplifies the magnetic field by an order of magnitude over half a Gyr. Despite the highly dynamical nature of these models, the morphology of the mean component of the field is identical to analytical predictions. This result underlines the importance of the mean-field dynamo in galactic evolution. Moreover, by demonstrating the natural growth of the magnetic field in a complex galactic environment, it brings us a step closer to understanding the cosmic origin of magnetic fields.Comment: Accepted for publication in Astronomy & Astrophysic

    A Young GMC Formed at the Interface of Two Colliding Supershells: Observations Meet Simulations

    Full text link
    Dense, star-forming gas is believed to form at the stagnation points of large-scale ISM flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way supershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining 12CO, 13CO and C18O(J=1-0) data with new high-resolution, 3D hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass (MH2 ~ 1.7 x 10^5 Msol), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas.Comment: 13 pages, 9 figures, accepted for publication in Ap

    Witnessing the fragmentation of a filament into prestellar cores in Orion B/NGC 2024

    Full text link
    Recent Herschel observations of nearby clouds have shown that filamentary structures are ubiquitous and that most prestellar cores form in filaments. Probing the density (nn) and velocity (VV) structure of filaments is crucial for the understanding of the star formation process. To characterize both the nn and the VV field of a fragmenting filament, we mapped NGC2024. 13CO, C18O, and H13CO+ trace the filament seen in the NH2N_{H_2} data. The radial profile from the NH2N_{H_2} data shows DHPD_{HP}~0.081 pc, which is similar to the Herschel findings. The DHPD_{HP} from 13CO and C18O are broader, while the DHPD_{HP} from H13CO+ is narrower, than DHPD_{HP} from Herschel. These results suggest that 13CO and C18O trace only the outer part of the filament and H13CO+ only the inner part. The H13CO+ VcentroidV_{centroid} map reveals VV gradients along both filament axis, as well as VV oscillations with a period λ\lambda~0.2 pc along the major axis. Comparison between the VV and the nn distribution shows a tentative λ\lambda/4 shift in H13CO+ or C18O. This λ\lambda/4 shift is not simultaneously observed for all cores in any single tracer but is tentatively seen in either H13CO+ or C18O. We produced a toy model taking into account a transverse VV gradient, a longitudinal VV gradient, and a longitudinal oscillation mode caused by fragmentation. Examination of synthetic data shows that the oscillation component produces an oscillation pattern in the velocity structure function (VSF) of the model. The H13CO+ VSF shows an oscillation pattern, suggesting that our observations are partly tracing core-forming motions and fragmentation. We also found that the mean McoreM_{core} corresponds to the effective MBEM_{BE} in the filament. This is consistent with a scenario in which higher-mass cores form in higher line-mass filaments.Comment: accepted in A&

    Formation of Cold Filamentary Structure from Wind Blown Superbubbles

    Get PDF
    The expansion and collision of two wind-blown superbubbles is investigated numerically. Our models go beyond previous simulations of molecular cloud formation from converging gas flows by exploring this process with realistic flow parameters, sizes and timescales. The superbubbles are blown by time-dependent winds and supernova explosions, calculated from population synthesis models. They expand into a uniform or turbulent diffuse medium. We find that dense, cold gas clumps and filaments form naturally in the compressed collision zone of the two superbubbles. Their shapes resemble the elongated, irregular structure of observed cold, molecular gas filaments and clumps. At the end of the simulations, between 65 and 80 percent of the total gas mass in our simulation box is contained in these structures. The clumps are found in a variety of physical states, ranging from pressure equilibrium with the surrounding medium to highly under-pressured clumps with large irregular internal motions and structures which are rotationally supported.Comment: Submitted to Ap
    • …
    corecore