15,754 research outputs found
Study of air pollutant signatures for remote sensing
Experimental results are presented for a possible new, indirect signature for air pollutants: the spectral reflectivity of plant leaves. Sub-visual changes (up to 160%) in the spectral reflectivity of bean and tobacco leaves were observed over the range 475nm to 750nm in response to SO2 exposures such as 2ppm/4hrs or 4ppm/16hrs, or to O3 exposures such as 90pphm/21hrs or 7.5pphm/292hrs. Such changes might be observed from a satellite using either laser or sunlight as the illumination source. Inasmuch as the plants appear to become acclimated to some of these exposure doses, environmental changes may be most important for this type of plant-response
Diffusion and structural changes in microcircuit interconnections
The interdiffusion of platimum and gold films, a couple utilized in beam lead microcircuits, has been studied for temperatures up to 550 C. Gold-on-platinum couples and separate platimum and gold films 80-450 nm thick, were deposited by electron beam evaporation onto oxidized (111) silicon substrates. Diffusion was monitored by means of spectral reflectance versus wavelength in the band 500-1000 nm. The separate metal films showed good adhesion and stable reflectances (after an initial change) for at least 6 h at diffusion temperatures, in contrast to the couples. Analysis of platinum diffusion through the gold films yielded an activation energy about 38 kcal/g-atom and a pre-exponential factor of the order 0.001 sq cm/sec, values close to those for volume diffusion. The pre-exponential factor especially is dependent upon film deposition conditions
Singlet-triplet avoided crossings and effective factor versus spatial orientation of spin-orbit-coupled quantum dots
We study avoided crossings opened by spin-orbit interaction in the energy
spectra of one- and two-electron anisotropic quantum dots in perpendicular
magnetic field. We find that for simultaneously present Rashba and Dresselhaus
interactions the width of avoided crossings and the effective factor depend
on the dot orientation within (001) crystal plane. The extreme values of these
quantities are obtained for [110] and [10] orientations of the dot.
The width of singlet-triplet avoided crossing changes between these two
orientations by as much as two orders of magnitude. The discussed modulation
results from orientation-dependent strength of the Zeeman interaction which
tends to polarize the spins in the direction of the external magnetic field and
thus remove the spin-orbit coupling effects
Time dependent configuration interaction simulations of spin swap in spin orbit coupled double quantum dots
We perform time-dependent simulations of spin exchange for an electron pair
in laterally coupled quantum dots. The calculation is based on configuration
interaction scheme accounting for spin-orbit (SO) coupling and
electron-electron interaction in a numerically exact way. Noninteracting
electrons exchange orientations of their spins in a manner that can be
understood by interdot tunneling associated with spin precession in an
effective SO magnetic field that results in anisotropy of the spin swap. The
Coulomb interaction blocks the electron transfer between the dots but the spin
transfer and spin precession due to SO coupling is still observed. The
electron-electron interaction additionally induces an appearance of spin
components in the direction of the effective SO magnetic field which are
opposite in both dots. Simulations indicate that the isotropy of the spin swap
is restored for equal Dresselhaus and Rashba constants and properly oriented
dots
Levy--Brownian motion on finite intervals: Mean first passage time analysis
We present the analysis of the first passage time problem on a finite
interval for the generalized Wiener process that is driven by L\'evy stable
noises. The complexity of the first passage time statistics (mean first passage
time, cumulative first passage time distribution) is elucidated together with a
discussion of the proper setup of corresponding boundary conditions that
correctly yield the statistics of first passages for these non-Gaussian noises.
The validity of the method is tested numerically and compared against
analytical formulae when the stability index approaches 2, recovering
in this limit the standard results for the Fokker-Planck dynamics driven by
Gaussian white noise.Comment: 9 pages, 13 figure
- …