11 research outputs found

    Diverting autophagic membranes for exocytosis

    Full text link
    We have recently shown that the Epstein Barr virus (EBV) incorporates the autophagic membrane label LC3B-II into mature virus particles. Upon EBV production, autophagic membranes are stabilized and infectious viral particle production is dependent on these, because ATG protein-deficiency dampens, whereas rapamycin induces, infectious particle production. Moreover, viral DNA accumulates in the cytosol when macroautophagy is impaired. We therefore conclude that EBV needs autophagic membranes for efficient enveloping during infectious viral particle production. Here, we discuss how EBV might incorporate lipidated LC3B (LC3B-II) into the viral envelope and how other viruses as well as cellular processes customize the macroautophagy machinery for exocytosis in the context of unconventional secretion

    Diverting autophagic membranes for exocytosis

    No full text

    Autophagy and autophagy-related proteins in the immune system

    Full text link
    Autophagy is an intracellular bulk degradation system that is highly conserved in eukaryotes. The discovery of autophagy-related ('ATG') proteins in the 1990s greatly advanced the mechanistic understanding of autophagy and clarified the fact that autophagy serves important roles in various biological processes. In addition, studies have revealed other roles for the autophagic machinery beyond autophagy. In this Review, we introduce advances in the knowledge of the roles of autophagy and its components in immunity, including innate immunity, inflammatory responses and adaptive immunity

    Macroautophagy proteins assist Epstein Barr Virus production and get incorporated into the virus particles

    Get PDF
    Epstein Barr virus (EBV) persists as a latent herpes virus infection in themajority of the adult human population. The virus can reactivate fromthis latent infection into lytic replication for virus particle production. Here, we report that autophagic membranes, which engulf cytoplasmic constituents during macroautophagy and transport them to lysosomal degradation, are stabilized by lytic EBV replication in infected epithelial and B cells. Inhibition of autophagic membrane formation compromises infectious particle production and leads to the accumulation of viral DNA in the cytosol. Vice versa, pharmacological stimulation of autophagic membrane formation enhances infectious virus production. Atg8/LC3, an essential macroautophagy protein and substrate anchor on autophagic membranes, was found in virus preparations, suggesting that EBV recruits Atg8/LC3 coupled membranes to its envelope in the cytosol. Our data indicate that EBV subverts macroautophagy and uses autophagic membranes for efficient envelope acquisition during lytic infection

    Regional and local effects of electric vehicles on air quality and noise

    No full text
    Road traffic is one of the main causes of poor air quality in European cities. The air pollution burden due to road traffic in a street canyon consists of shares from local traffic and contributions of vehicles driving elsewhere in the city as well as elsewhere on a larger scale. Are electric vehicles a solution for air quality problems in cities? Do they reduce noise levels in street canyons significantly? The aim of this sensitivity study is to investigate the regional and local effects of electric vehicles on noise and air quality taking possible effects of additional electricity production into account. Focus of the present study lies for air quality on the regional scale in North Rhine-Westphalia and the overall effect in some selected street canyons, to be more precise the annual average PM10 and NO2 concentrations. A sensitivity study using the chemistry transport model EURAD and a screening model for street canyons was carried out. The influence on noise levels was analysed based on measurements of vehicles at different speeds. It turns out that road traffic has a significant impact on the regional air pollution levels. Furthermore it is shown that the reduction potential is bigger for NO2 than for PM10. With regard to EC limit value compliance a major share of electric vehicles could be a solution for the NO2 problems in moderately polluted street canyons. One of our findings is that if the additional electricity need causes additional emissions these counteract the possible reduction, especially for PM10. The noise reduction potential of electric vehicles is only significant for vehicles moving at low speeds

    The autophagy machinery interacts with EBV capsids during viral envelope release

    Full text link
    Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release

    Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8(+) T Cell Responses

    Get PDF
    The macroautophagy machinery has been implicated in MHC class II restricted antigen presentation. Here, we report that this machinery assists in the internalization of MHC class I molecules. In the absence of the autophagy factors Atg5 and Atg7, MHC class I surface levels are elevated due to decreased endocytosis and degradation. Internalization of MHC class I molecules occurs less efficiently if AAK1 cannot be recruited via Atg8/LC3B. In the absence of Atg-dependent MHC class I internalization, dendritic cells stimulate CD8(+) T cell responses more efficiently in vitro and in vivo. During viral infections, lack of Atg5 results in enhanced influenza- and LCMV-specific CD8(+) T cell responses in vivo. Elevated influenza-specific CD8(+) T cell responses are associated with better immune control of this infection. Thus, the macroautophagy machinery orchestrates T cell immunity by supporting MHC class II but compromises MHC class I restricted antigen presentation

    Degradation of protein translation machinery by amino acid starvation-induced macroautophagy

    No full text
    <p>Macroautophagy is regarded as a nonspecific bulk degradation process of cytoplasmic material within the lysosome. However, the process has mainly been studied by nonspecific bulk degradation assays using radiolabeling. In the present study we monitor protein turnover and degradation by global, unbiased approaches relying on quantitative mass spectrometry-based proteomics. Macroautophagy is induced by rapamycin treatment, and by amino acid and glucose starvation in differentially, metabolically labeled cells. Protein dynamics are linked to image-based models of autophagosome turnover. Depending on the inducing stimulus, protein as well as organelle turnover differ. Amino acid starvation-induced macroautophagy leads to selective degradation of proteins important for protein translation. Thus, protein dynamics reflect cellular conditions in the respective treatment indicating stimulus-specific pathways in stress-induced macroautophagy.</p
    corecore