2,256 research outputs found
Unconventional quantum Hall effect and Berry’s phase 2pi in bilayer graphene.
There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry’s phase pi, which results in a shifted positions of Hall plateaus. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and exhibit Berry’s phase 2pi affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies
Chiral tunneling and the Klein paradox in graphene
The so-called Klein paradox - unimpeded penetration of relativistic particles
through high and wide potential barriers - is one of the most exotic and
counterintuitive consequences of quantum electrodynamics (QED). The phenomenon
is discussed in many contexts in particle, nuclear and astro- physics but
direct tests of the Klein paradox using elementary particles have so far proved
impossible. Here we show that the effect can be tested in a conceptually simple
condensed-matter experiment by using electrostatic barriers in single- and
bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum
tunneling in these materials becomes highly anisotropic, qualitatively
different from the case of normal, nonrelativistic electrons. Massless Dirac
fermions in graphene allow a close realization of Klein's gedanken experiment
whereas massive chiral fermions in bilayer graphene offer an interesting
complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure
Intrinsic ripples in graphene
The stability of two-dimensional (2D) layers and membranes is subject of a
long standing theoretical debate. According to the so called Mermin-Wagner
theorem, long wavelength fluctuations destroy the long-range order for 2D
crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be
crumpled. These dangerous fluctuations can, however, be suppressed by
anharmonic coupling between bending and stretching modes making that a
two-dimensional membrane can exist but should present strong height
fluctuations. The discovery of graphene, the first truly 2D crystal and the
recent experimental observation of ripples in freely hanging graphene makes
these issues especially important. Beside the academic interest, understanding
the mechanisms of stability of graphene is crucial for understanding electronic
transport in this material that is attracting so much interest for its unusual
Dirac spectrum and electronic properties. Here we address the nature of these
height fluctuations by means of straightforward atomistic Monte Carlo
simulations based on a very accurate many-body interatomic potential for
carbon. We find that ripples spontaneously appear due to thermal fluctuations
with a size distribution peaked around 70 \AA which is compatible with
experimental findings (50-100 \AA) but not with the current understanding of
stability of flexible membranes. This unexpected result seems to be due to the
multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure
Electronic Properties of Boron and Nitrogen doped graphene: A first principles study
Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by
B and N is studied using density functional theory. Our extensive band
structure and density of states calculations indicate that upon doping by N
(electron doping), the Dirac point in the graphene band structure shifts below
the Fermi level and an energy gap appears at the high symmetric K-point. On the
other hand, by B (hole doping), the Dirac point shifts above the Fermi level
and a gap appears. Upon co-doping of graphene by B and N, the energy gap
between valence and conduction bands appears at Fermi level and the system
behaves as narrow gap semiconductor. Obtained results are found to be in well
agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
The nature of localization in graphene under quantum Hall conditions
Particle localization is an essential ingredient in quantum Hall physics
[1,2]. In conventional high mobility two-dimensional electron systems Coulomb
interactions were shown to compete with disorder and to play a central role in
particle localization [3]. Here we address the nature of localization in
graphene where the carrier mobility, quantifying the disorder, is two to four
orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density
of states and the localized state spectrum of a graphene flake in the quantum
Hall regime with a scanning single electron transistor [11]. Our microscopic
approach provides direct insight into the nature of localization. Surprisingly,
despite strong disorder, our findings indicate that localization in graphene is
not dominated by single particle physics, but rather by a competition between
the underlying disorder potential and the repulsive Coulomb interaction
responsible for screening.Comment: 18 pages, including 5 figure
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2
The linear dispersion relation in graphene[1,2] gives rise to a surprising
prediction: the resistivity due to isotropic scatterers (e.g. white-noise
disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show
that acoustic phonon scattering[4-6] is indeed independent of n, and places an
intrinsic limit on the resistivity in graphene of only 30 Ohm at room
temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2,
the mean free path for electron-acoustic phonon scattering is >2 microns, and
the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known
inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon
nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by
surface phonons of the SiO2 substrate[11,12] adds a strong temperature
dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4
cm^2/Vs, pointing out the importance of substrate choice for graphene
devices[13].Comment: 16 pages, 3 figure
Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor
The electronic density of states of graphene is equivalent to that of
relativistic electrons. In the absence of disorder or external doping the Fermi
energy lies at the Dirac point where the density of states vanishes. Although
transport measurements at high carrier densities indicate rather high
mobilities, many questions pertaining to disorder remain unanswered. In
particular, it has been argued theoretically, that when the average carrier
density is zero, the inescapable presence of disorder will lead to electron and
hole puddles with equal probability. In this work, we use a scanning single
electron transistor to image the carrier density landscape of graphene in the
vicinity of the neutrality point. Our results clearly show the electron-hole
puddles expected theoretically. In addition, our measurement technique enables
to determine locally the density of states in graphene. In contrast to
previously studied massive two dimensional electron systems, the kinetic
contribution to the density of states accounts quantitatively for the measured
signal. Our results suggests that exchange and correlation effects are either
weak or have canceling contributions.Comment: 13 pages, 5 figure
- …