47 research outputs found
Rapid diagnostic tests relying on antigen detection from stool as an efficient point of care testing strategy for giardiasis and cryptosporidiosis? Evaluation of a new immunochromatographic duplex assay
Microscopy is the gold standard for the diagnosis of gastrointestinal parasites but is time-consuming and dependent on operator skills. Rapid diagnostic tests represent alternative methods but most evaluations have been conducted on a limited number of samples preventing their implementation in the clinical setting. We evaluated a new CE-IVD marked immunochromatographic assay (Crypto/Giardia K-SeT®, Coris Bioconcept) for the detection of G. intestinalis and Cryptosporidium spp. in 2 phases (retrospective and prospective) on a set of 482 stool samples including rare Cryptosporidium species. Besides G. intestinalis, this test could represent a rapid and reliable alternative to the modified Ziehl-Neelsen staining for the diagnosis of cryptosporidiosis (sensitivity/specificity were 89.2%/99.3% and 86.7%/100% for G. intestinalis and Cryptosporidium resp.), reducing diagnostic delays. Such strategy would also be time-saving by avoiding wet mount microscopy and concentrations steps, being particularly appropriate for laboratories having little expertise in microscopy or not able to implement molecular diagnostic methods
Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%–61%median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize ?-glucans rather than ?-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease
Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body.
International audiencePtdIns(3,5)P(2) is required for cargo-selective sorting to the vacuolar lumen via the multivesicular body (MVB). Here we show that Ent3p, a yeast epsin N-terminal homology (ENTH) domain-containing protein, is a specific PtdIns(3,5)P(2) effector localized to endosomes. The ENTH domain of Ent3p is essential for its PtdIns(3,5)P(2) binding activity and for its membrane interaction in vitro and in vivo. Ent3p is required for protein sorting into the MVB but not for the internalization step of endocytosis. Ent3p is associated with clathrin and is necessary for normal actin cytoskeleton organization. Our results show that Ent3p is required for protein sorting into intralumenal vesicles of the MVB through PtdIns(3,5)P(2) binding via its ENTH domain.PtdIns(3,5)P(2) is required for cargo-selective sorting to the vacuolar lumen via the multivesicular body (MVB). Here we show that Ent3p, a yeast epsin N-terminal homology (ENTH) domain-containing protein, is a specific PtdIns(3,5)P(2) effector localized to endosomes. The ENTH domain of Ent3p is essential for its PtdIns(3,5)P(2) binding activity and for its membrane interaction in vitro and in vivo. Ent3p is required for protein sorting into the MVB but not for the internalization step of endocytosis. Ent3p is associated with clathrin and is necessary for normal actin cytoskeleton organization. Our results show that Ent3p is required for protein sorting into intralumenal vesicles of the MVB through PtdIns(3,5)P(2) binding via its ENTH domain
On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers
Blastocystis spp. pathogenic potential remains unclear as these anaerobic parasitic protozoa are frequently isolated from stools of both symptomatic and asymptomatic subjects. In silico analysis of the whole genome sequence of Blastocystis subtype 7 revealed the presence of numerous proteolytic enzymes including cysteine proteases predicted to be secreted. To assess the potential impact of proteases on intestinal cells and gut function, we focused our study on two cysteine proteases, a legumain and a cathepsin B, which were previously identified in Blastocystis subtype 7 culture supernatants. Both cysteine proteases were produced as active recombinant proteins. Activation of the recombinant legumain was shown to be autocatalytic and triggered by acidic pH, whereas proteolytic activity of the recombinant cathepsin B was only recorded after co-incubation with the legumain. We then measured the diffusion of 4-kDa FITC-labelled dextran across Caco-2 cell monolayers following exposition to either Blastocystis culture supernatants or each recombinant protease. Both Blastocystis culture supernatants and recombinant activated cathepsin B induced an increase of Caco-2 cell monolayer permeability, and this effect was significantly inhibited by E-64, a specific cysteine protease inhibitor. Our results suggest that cathepsin B might play a role in pathogenesis of Blastocystis by increasing intestinal cell permeability
The MAST® D68C test: an interesting tool for detecting extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae
International audienceThe MastA (R) D68C test is a phenotypical test that allows the detection of extended-spectrum beta-lactamase (ESBL) production, even in AmpC-producing Enterobacteriaceae. We assessed its detection accuracy against a large collection of 106 Enterobacteriaceae isolates producing a wide diversity of well-characterized beta-lactamases (53 ESBL producers, 25 Amp. producers, seven AmpC and ESBL producers, five carbapenemase producers, three carbapenemase and ESBL producers, one AmpC, carbapenemase, and ESBL producer, three TEM-1 producers, three SHV-1 producers, three OXA-1 producers, and one hyperOXY producer, ATCC 35218, ATCC 25922 [a beta-lactamase-negative control strain]). The results were compared with those of the double disk test and the Clinical and Laboratory Standards Institute (CLSI) confirmatory test for the detection of ESBL. The sensitivity was 90.6 % for the synergy test, 87.5 % for the CLSI method, and only 73.1 % for D68C, which, however, reached 92.1 % if the strains for which supplementary investigations were recommended and the complex mutant TEM (CMT)-producing strains were excluded versus 94.1 % and 88.2 % for the other methods. The specificity was 90.2 % for the synergy test and 100 % for the CLSI method and D68C. D68C was also efficient in detecting AmpC-overproducing strains (sensitivity = 97 %, specificity = 95.9 %): among the 74 strains belonging to natural AmpC-producing species, the sensitivity and specificity were 100 and 94.8 %, respectively. The MastA (R) D68C-test is a promising method that is easy to perform for the detection of current ESBLs and could also be useful for the detection of plasmid-encoded AmpC enzymes (sensitivity = 100 %)
Is real-time PCR-based diagnosis similar in performance to routine parasitological examination for the identification of Giardia intestinalis , Cryptosporidium parvum / Cryptosporidium hominis and Entamoeba histolytica from stool samples? Evaluation of a new commercial multiplex PCR assay and literature review
International audienceMicroscopy is the reference standard for routine laboratory diagnosis in faecal parasitology but there is growing interest in alternative methods to overcome the limitations of microscopic examination, which is time-consuming and highly dependent on an operator's skills and expertise. Compared with microscopy, DNA detection by PCR is simple and can offer a better turnaround time. However, PCR performances remain difficult to assess as most studies have been conducted on a limited number of positive clinical samples and used in-house PCR methods. Our aim was to evaluate a new multiplex PCR assay (G-DiaParaTrio; Diagenode Diagnostics), targeting Giardia intestinalis, Cryptosporidium parvum/Cryptosporidium hominis and Entamoeba histolytica. To minimize the turnaround time, PCR was coupled with automated DNA extraction (QiaSymphony; Qiagen). The PCR assay was evaluated using a reference panel of 185 samples established by routine microscopic examination using a standardized protocol including Ziehl-Neelsen staining and adhesin detection by ELISA (E. histolytica II; TechLab). This panel, collected from 12 French parasitology laboratories, included 135 positive samples for G. intestinalis (n = 38), C. parvum/C. hominis (n = 26), E. histolytica (n = 5), 21 other gastrointestinal parasites, together with 50 negative samples. In all, the G-DiaParaTrio multiplex PCR assay identified 38 G. intestinalis, 25 C. parvum/C. hominis and five E. histolytica leading to sensitivity/specificity of 92%/100%, 96%/100% and 100%/100% for G. intestinalis, C. parvum/C. hominis and E. histolytica, respectively. This new multiplex PCR assay offers fast and reliable results, similar to microscopy-driven diagnosis for the detection of these gastrointestinal protozoa, allowing its implementation in routine clinical practice
Thermothelomyces thermophila human infections
International audienc
Evaluation of a new multiplex PCR assay (ParaGENIE G-Amoeba Real-Time PCR kit) targeting Giardia intestinalis, Entamoeba histolytica and Entamoeba dispar/Entamoeba moshkovskii from stool specimens: evidence for the limited performances of microscopy-based approach for amoeba species identification
International audienceObjectivesBesides the potential to identify a wide variety of gastrointestinal parasites, microscopy remains the reference standard in clinical microbiology for amoeba species identification and, especially when coupled with adhesin detection, to discriminate the pathogenic Entamoeba histolytica from its sister but non-pathogenic species Entamoeba dispar/Entamoeba moshkovskii. However, this approach is time-consuming, requires a high-level of expertise that can be jeopardized considering the low prevalence of gastrointestinal parasites in non-endemic countries. Here, we evaluated the CE-IVD-marked multiplex PCR (ParaGENIE G-Amoeba, Ademtech) targeting E. histolytica and E. dispar/E. moshkovskii and Giardia intestinalis.MethodsThis evaluation was performed blindly on a reference panel of 172 clinical stool samples collected prospectively from 12 laboratories and analysed using a standardized protocol relying on microscopy (and adhesin detection by ELISA for the detection of E. histolytica) including G. intestinalis (n = 37), various amoeba species (n = 55) including E. dispar (n = 15), E. histolytica (n = 5), as well as 17 other gastrointestinal parasites (n = 80), and negative samples (n = 37).ResultsThis new multiplex PCR assay offers fast and reliable results with appropriate sensitivity and specificity for the detection of G. intestinalis and E. dispar/E. moshkovskii from stools (89.7%/96.9% and 95%/100%, respectively). Detection rate and specificity were greatly improved by the PCR assay, highlighting several samples misidentified by microscopy, including false-negative and false-positive results for both E. dispar/E. moshkovskii and E. histolytica.ConclusionGiven the clinical relevance of amoeba species identification, microbiologists should be aware of the limitations of using an algorithm relying on microscopy coupled with adhesin detection by ELISA