111 research outputs found

    Boundary layer simulator improvement

    Get PDF
    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models

    Magnetic Resonance Imaging of Optic Nerve Traction During Adduction in Primary Open-Angle Glaucoma With Normal Intraocular Pressure.

    Get PDF
    PurposeWe used magnetic resonance imaging (MRI) to ascertain effects of optic nerve (ON) traction in adduction, a phenomenon proposed as neuropathic in primary open-angle glaucoma (POAG).MethodsSeventeen patients with POAG and maximal IOP ≤ 20 mm Hg, and 31 controls underwent MRI in central gaze and 20° to 30° abduction and adduction. Optic nerve and sheath area centroids permitted computation of midorbital lengths versus minimum paths.ResultsAverage mean deviation (±SEM) was -8.2 ± 1.2 dB in the 15 patients with POAG having interpretable perimetry. In central gaze, ON path length in POAG was significantly more redundant (104.5 ± 0.4% of geometric minimum) than in controls (102.9 ± 0.4%, P = 2.96 × 10-4). In both groups the ON became significantly straighter in adduction (28.6 ± 0.8° in POAG, 26.8 ± 1.1° in controls) than central gaze and abduction. In adduction, the ON in POAG straightened to 102.0% ± 0.2% of minimum path length versus 104.5% ± 0.4% in central gaze (P = 5.7 × 10-7), compared with controls who straightened to 101.6% ± 0.1% from 102.9% ± 0.3% in central gaze (P = 8.7 × 10-6); and globes retracted 0.73 ± 0.09 mm in POAG, but only 0.07 ± 0.08 mm in controls (P = 8.8 × 10-7). Both effects were confirmed in age-matched controls, and remained significant after correction for significant effects of age and axial globe length (P = 0.005).ConclusionsAlthough tethering and elongation of ON and sheath are normal in adduction, adduction is associated with abnormally great globe retraction in POAG without elevated IOP. Traction in adduction may cause mechanical overloading of the ON head and peripapillary sclera, thus contributing to or resulting from the optic neuropathy of glaucoma independent of IOP

    Vertical Macular Asymmetry Measures Derived From SD-OCT for Detection of Early Glaucoma.

    Get PDF
    PurposeTo test the hypothesis that vertical asymmetry in macular ganglion cell/inner plexiform layer (GCIPL) thickness can improve detection of early glaucoma.MethodsSixty-nine normal eyes and 101 glaucoma eyes had macular imaging with spectral-domain optical coherence tomography (OCT; 200 × 200 cube). The resulting GCIPL thickness matrix was grouped into a 20 × 20 superpixel array and superior superpixels were compared to their inferior counterparts. A global asymmetry index (AI) was defined as the grand mean of the asymmetry ratios. To measure local asymmetry, the corresponding thickness measurements of three rows above and below the horizontal raphe were compared individually and in combinations. Global and local AIs were compared to the best-performing GCIPL thickness parameters with area under the receiver operating curves (AUC) and sensitivity/specificities.ResultsAge or axial length did not influence AIs in normal subjects (P ≥ 0.08). Global and local AIs were significantly higher in the glaucoma group compared to normal eyes. Minimum (AUC = 0.962, 95% confidence interval [CI]: 0.936-0.989) and inferotemporal thickness (AUC = 0.944, 95% CI: 0.910-0.977; P = 0.122) performed best for detection of early glaucoma. The AUC for global AI was 0.851 (95% CI: 0.792-0.909) compared to 0.916 (95% CI: 0.874-0.958) for the best local AI. Combining minimum or inferotemporal GCIPL thickness and the best local AI led to higher partial AUCs (0.088 and 0.085, 90% specificity, P = 0.120 and 0.130, respectively) than GCIPL thickness measures.ConclusionsMacular vertical thickness asymmetry measures did not perform better than sectoral or minimum GCIPL thickness for detection of early glaucoma. Combining local asymmetry parameters with the best sectoral GCIPL thickness measures enhanced this task

    Comparison of Outcomes between Endoscopic and Transcleral Cyclophotocoagulation.

    Get PDF
    Importance: Traditionally cyclophotocoagulation has been reserved as a treatment of last resort for eyes with advanced stage glaucoma, but increasingly it is offered to eyes with less severe disease. Endoscopic approaches in particular are utilized in increasing numbers of patients despite only a small number of publications on its results. Objective: The purpose of this study was to compare the efficacy and safety of endoscopic and transcleral cyclophotocoagulation (ECP and TCP) procedures in eyes with refractory glaucomas. Design, Setting, and Participants: A chart review was performed on consecutive patients who underwent ECP and TCP at a tertiary ophthalmology care center between January 2000 and December 2010. Cases with fewer than 3 months of follow-up or that had concurrent pressure reducing procedures were excluded. The main outcome measures examined were intraocular pressure (IOP), number of glaucoma medications, best corrected visual acuity (BCVA), additional glaucoma procedure required, and complications. Main Outcomes and Measures: Forty-two eyes (42 patients) that underwent ECP and forty-four eyes (44 patients) that underwent TCP were identified. The TCP group had a statistically higher mean age (71.2 ± 16.7 vs. 58.1 ± 22.9 years, respectively), larger proportion of neovascular glaucoma (40.9% vs. 16.7%), worse initial BCVA (logMAR 2.86 vs. 1.81), and higher preoperative IOP (45.3 vs. 26.6 mmHg) than the ECP group. At 12 months follow-up, the mean IOP difference between groups was not statistically significant, although the change in IOP from baseline to 12 months was greater for the TCP group (p = 0.006). The rates of progression to no light perception (NLP) and phthisis bulbi were significantly higher amongst TCP eyes than ECP eyes (27.2% vs. 4.8%, p = 0.017, and 20.5% vs. 0%, p = 0.003, respectively). Of these eyes that progressed, a majority had neovascular glaucoma (NVG). Corneal decompensation was the most frequent complication following ECP (11.9%). Conclusions and Relevance: In patients with preoperative BCVA of 20/400 or better, overall complication rates (cystoid macular edema, exudative retinal detachment, inflammation, cornea decompensation) were higher after ECP than with TCP. In refractory glaucomas in a real world setting (not a trial), TCP was more frequently used in ischemic eyes. TCP was associated with a higher rate of progression to phthisis bulbi and loss of light perception than ECP. However, ECP was associated with a clinically significant rate of corneal decompensation. These outcomes likely were related to the severity of underlying ocular diseases found in these eyes

    Rotational Molding of Polyamide-12 Nanocomposites: Modeling of the Viscoelastic Behavior

    Get PDF
    Nowadays, polyamide 12 (PA-12) is considered as an interesting polymer in the rotomolding process to manufacture different pieces like the liner part in the storage hydrogen tank (type IV). In this study, the pure polyamide-12 and PA12 pieces, incorporated with 0.5%, 1% and 3% wt Nano Carbon Black (NCB), were manufactured by the rotomolding process. Different rotomolding parameters such as heating temperature, time of heating, and cooling rate have been optimized to obtain the ideal piece. The effect of volume fraction of NCB in terms of physicochemical and mechanical properties has been studied. Afterward, the optimal volume fraction of NCB is revealed using different characterization methods. The tensile results specified the addition of NCBs until 0.5% improved the tensile behavior. The addition of NCBs more than 0.5% decreases the mechanical properties in terms of failure stress and strain, while it has no significant effect on the elastic modulus of PA-12. The bi-parabolic the Perez model has been used to study the viscoelastic behavior of PA-12 using the Cole-Cole method. The constants of the Perez model indicate a good correlation between viscoelastic experimental results and the model used

    Social media in democratic transitions and consolidations: what can we learn from the case of Tunisia?

    Get PDF
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. The aim of this paper is to analyse the use of social media in the stages of uprising, democratic transition and democratic consolidation using the case study of Tunisia. While the impact of social media in uprisings has been widely documented in past research about the MENA region, Tunisia provides new evidence to the use of Internet in the processes of democratisation. Consequently, this research focuses in detail on the benefits but also the pitfalls of social media in transitions and consolidations. Data collection was based on interviews with Tunisian social media activists. The analysis is valuable to social media practitioners and researchers alike

    Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery

    Full text link
    Irrigation is a large component of urban water budgets in semi-arid regions and is critical for the management of landscape vegetation and water resources. This is particularly true for Mediterranean climate cities such as Los Angeles, where water availability is limited during dry summers. These interactions were examined by using 10-m resolution satellite imagery and a database of monthly water use records for all residential water customers in Los Angeles in order to map vegetation greenness, the extent and distribution of irrigated areas, and irrigation rates. A water conservation ratio between rates of irrigation and vegetation water demand was calculated to assess over-irrigation. The analyses were conducted for the water years (WY) 2005–2007, which included wet, average, and dry extremes of annual rainfall. Although outdoor water usage was highest in the dry year, vegetation greenness could not be maintained as well as in wetter years, suggesting that lower greenness was due to water stress. However, annual rainfall from WY 2005 to 2007 did not significantly influence the variability in the magnitude and spatial pattern of irrigation, with mean irrigated rates ranging only from 81 to 86 mm. The water conservation ratio showed that 7 % of the postal carrier routes across the city were over-irrigated in the dry year, but 43 % were over-irrigated in the wet year. This was largely because the climatic demand for water by vegetation decreased in wet years, but irrigation rates changed little from year-to-year. This overwatering can be addressed by water conservation, planning and public education, especially in the current California drought. The approach demonstrated here should be transferable to other cities in semi-arid climates

    Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments

    Get PDF
    Nuclear facilities have a regulatory requirement to measure radiation levels within Post Operational Cleanout (POCO) around nuclear facilities each year, resulting in a trend towards robotic deployments to gain an improved understanding during nuclear decommissioning phases. The UK Nuclear Decommissioning Authority supports the view that human-in-the-loop robotic deployments are a solution to improve procedures and reduce risks within radiation haracterisation of nuclear sites. We present a novel implementation of a Cyber-Physical System (CPS) deployed in an analogue nuclear environment, comprised of a multi-robot team coordinated by a human-in-the-loop operator through a digital twin interface. The development of the CPS created efficient partnerships across systems including robots, digital systems and human. This was presented as a multi-staged mission within an inspection scenario for the heterogeneous Symbiotic Multi-Robot Fleet (SMuRF). Symbiotic interactions were achieved across the SMuRF where robots utilised automated collaborative governance to work together where a single robot would face challenges in full characterisation of radiation. Key contributions include the demonstration of symbiotic autonomy and query-based learning of an autonomous mission supporting scalable autonomy and autonomy as a service. The coordination of the CPS was a success and displayed further challenges and improvements related to future multi-robot fleets

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting
    corecore