14 research outputs found

    N 2 O and NO emissions during wastewater denitrification step: Influence of temperature on the biological process

    No full text
    International audienceThe denitrification process occurring in wastewater treatment plants (WWTPs) is responsible for nitrous oxide (N2O) and nitric oxide (NO) emissions. These compounds indirectly lead to the global warming. In this study, we investigated the impact of the temperature on N2O and NO emissions. Experiments were achieved at PH 7 in a batch reactor with acetate as the carbon source. The nitrogen source was nitrates (NO3−) and the COD/N ratio was set to three. Results showed that NO and N2O emissions increased when the temperature decreased. NO emissions appeared only at 10 °C and 5 °C, with respectively 8% and 18% of the total denitrified nitrogen. N2O emissions increased from 13 to 40 then 82% of the total denitrified nitrogen, respectively at 20, 10 and 5 °C. Several hypotheses were suggested to explain these results: a general enzymatic slow down, enzymatic inhibitions, electron donor competition between the different enzymes and metabolic pathway alterations

    Role of Seasons in the Fate of Dissolved Organic Carbon and Nutrients in a Large-Scale Surface Flow Constructed Wetland

    No full text
    The role of seasons in the removal of dissolved organic carbon (DOC), nutrients and in changes in the spectral properties of dissolved organic matter (DOM) in a large-scale surface flow constructed wetland (SF-CW) receiving reclaimed water and composed of three basins with different vegetation patterns was studied. Dissolved nitrogen removal efficiencies within the three basins in summer (>50%) and winter (−1. UV-visible indices, such as the specific absorbance at 254 nm or the spectral slope between 275 and 295 nm, did not vary over the seasons; thus, the basins did not change DOM aromaticity and average molecular weight. Synchronous fluorescence spectra showed variations in terms of protein-like and humic-like substances, the latter being more sensitive to photodegradation. A lab-scale photodegradation experiment confirmed that radiation from the sun was responsible for this decrease, showing this process could alter the composition of DOM at full-scale. DOM variations result from a seasonal competition between release by vegetation and photodegradation. These results validate the necessity for long-term monitoring of SF-CWs, and the utility of rapid optical methods to monitor DOC

    Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester

    No full text
    International audienceA transient thermal model has been developed for predicting temperature variations in semi-buried anaerobic digesters as a function of climatic conditions (ambient temperature, solar irradiation, rain intensity, etc.). Compared to literature, the modeling of several heat transfer terms was improved. Predicted operating temperatures were in good agreement with experimental observations. The simulation results allowed identifying phenomena leading to major energy losses from the reactor. Technical solutions were recommended to reduce heat losses in anaerobic digesters. The present model constitutes a powerful predictive tool for assisting engineers in determining the optimal design of digesters, as well as in the investigation of the influence of materials type on the reactor heating requirements

    Characterization of hyporheic DOM by optical methods

    No full text
    International audienc

    Growth of Microalgae-Bacteria Flocs for Nutrient Recycling from Digestate and Liquid Slurry and Methane Production by Anaerobic Digestion

    No full text
    Biogas production by anaerobic digestion from different wastes represents a growing interest in the panel of renewable energy. Digestate has already been a subject of numerous studies as part of microalgal culturing because it is still rich in nutrients. This study wants to use it as a reference to investigate the possibility to exploit Slurry for the same applications. The first part of this research aims to evaluate microalgae-bacterial flocs growth for nutrient recycling from liquid digestate and slurry, working at three different dilutions (10%, 30%, and 50%) of these two substrates, in order to determine the best value for nutrients and pollutants removal (ammonia and chemical oxygen demand removal rate) and microalgae-bacterial biomass production (autotrophic index). The best dilutions were 30% for digestate and 10% for slurry, allowing the highest ammonia and chemical oxygen demand removal rates. The second part evaluated methane production during anaerobic digestion at different ratios of substrate/inoculum (0.2, 0.5, and 0.8), using microalgae-bacterial flocs as a substrate and digestate or slurry as the inoculum. After 30 days, the anaerobic digestion without flocs showed the best performance compared to digestion with flocs (726.7 mL CH4·g−1 slurry, 245.6 mL CH4·g−1 digestate), whereas, for flocs digestion, the best ratio for both inocula was 0.2 substrate/inoculum with 317.2 mL CH4·g−1 slurry and 165.7 mL CH4·g−1 digestate. All solid masses are expressed in terms of volatile solids (VS)

    Growth of Microalgae-Bacteria Flocs for Nutrient Recycling from Digestate and Liquid Slurry and Methane Production by Anaerobic Digestion

    No full text
    Biogas production by anaerobic digestion from different wastes represents a growing interest in the panel of renewable energy. Digestate has already been a subject of numerous studies as part of microalgal culturing because it is still rich in nutrients. This study wants to use it as a reference to investigate the possibility to exploit Slurry for the same applications. The first part of this research aims to evaluate microalgae-bacterial flocs growth for nutrient recycling from liquid digestate and slurry, working at three different dilutions (10%, 30%, and 50%) of these two substrates, in order to determine the best value for nutrients and pollutants removal (ammonia and chemical oxygen demand removal rate) and microalgae-bacterial biomass production (autotrophic index). The best dilutions were 30% for digestate and 10% for slurry, allowing the highest ammonia and chemical oxygen demand removal rates. The second part evaluated methane production during anaerobic digestion at different ratios of substrate/inoculum (0.2, 0.5, and 0.8), using microalgae-bacterial flocs as a substrate and digestate or slurry as the inoculum. After 30 days, the anaerobic digestion without flocs showed the best performance compared to digestion with flocs (726.7 mL CH4·g−1 slurry, 245.6 mL CH4·g−1 digestate), whereas, for flocs digestion, the best ratio for both inocula was 0.2 substrate/inoculum with 317.2 mL CH4·g−1 slurry and 165.7 mL CH4·g−1 digestate. All solid masses are expressed in terms of volatile solids (VS)

    Simulation of the Denitrification Process of Waste Water with a Biochemical Systems Model: A Non-Conventional Approach

    No full text
    International audienceMatching experimental and theoretical approaches have often been fruitful in the investigation of complex biological processes. Here we develop a novel non-conventional model for the denitrification of waste water. Earlier models of the denitrification process were compiled by the International Association on Water Quality group. The Activated Sludge Models 1–3, which are the most frequently used all over the world, are presently not adapted towards the integration of both nitrous and nitric oxide emissions during the denitrification process. In the present work, a Generalized Mass Action model, based on Biochemical Systems Theory, was designed to simulate the nitrate reduction observed in specific experimental conditions. The model was implemented and analysed with the software package PLAS. Data from a representative experiment were chosen (T=10°C, pH=7, C/N=3, with acetate as carbon source) to simulate greenhouse NO and N2O gas emissions, in order to test hypotheses about the corresponding bacterial metabolic pathways. The results show that the reduction of nitrate and nitrite is kinetically limiting and that nitrate reduction is limited by diffusion and support that distinct microbial subpopulations are involved in the denitrification pathway, which has consequences for NO emissions
    corecore