104 research outputs found

    Electric control of spin states in frustrated triangular molecular magnets

    Full text link
    Frustrated triangular molecular magnets are a very important class of magnetic molecules since the absence of inversion symmetry allows an external electric field to couple directly with the spin chirality that characterizes their ground state. The spin-electric coupling in these molecular magnets leads to an efficient and fast method of manipulating spin states, making them an exciting candidate for quantum information processing. The efficiency of the spin-electric coupling depends on the electric dipole coupling between the chiral ground states of these molecules. In this paper, we report on first-principles calculations of spin-electric coupling in {V3}\{V_3\} triangular magnetic molecule. We have explicitly calculated the spin-induced charge redistribution within the magnetic centers that is responsible for the spin-electric coupling. Furthermore, we have generalized the method of calculating the strength of the spin-electric coupling to calculate any triangular spin 1/2 molecule with C3C_3 symmetry and have applied it to calculate the coupling strength in {V15}\{V_{15}\} molecular magnets

    Electric control of a {Fe4}\{Fe_4\} single-molecule magnet in a single-electron transistor

    Full text link
    Using first-principles methods we study theoretically the properties of an individual {Fe4}\{Fe_4\} single-molecule magnet (SMM) attached to metallic leads in a single-electron transistor geometry. We show that the conductive leads do not affect the spin ordering and magnetic anisotropy of the neutral SMM. On the other hand, the leads have a strong effect on the anisotropy of the charged states of the molecule, which are probed in Coulomb blockade transport. Furthermore, we demonstrate that an external electric potential, modeling a gate electrode, can be used to manipulate the magnetic properties of the system. For a charged molecule, by localizing the extra charge with the gate voltage closer to the magnetic core, the anisotropy magnitude and spin ordering converges to the values found for the isolated {Fe4}\{Fe_4\} SMM. We compare these findings with the results of recent quantum transport experiments in three-terminal devices

    Rehabilitation of Post-COVID Patients: A Virtual Reality Home-Based Intervention Including Cardio-Respiratory Fitness Training

    Get PDF
    The post-COVID syndrome is emerging as a new chronic condition, characterized by symptoms of breathlessness, fatigue, and decline of neurocognitive functions. Rehabilitation programs that include physical training seem to be beneficial to reduce such symptoms and improve patients' quality of life. Given this, and considering the limitations imposed by the pandemic on rehabilitation services, it emerged the need to integrate telerehabilitation programs into clinical practice. Some telerehabilitation solutions, also based on virtual reality (VR), are available in the market. Still, they mainly focus on rehabilitation of upper limbs, balance, and cognitive training, while exercises like cycling or walking are usually not considered. The presented work aims to fill this gap by integrating a VR application to provide cardio-respiratory fitness training to post-COVID patients in an existing telerehabilitation platform. The ARTEDIA application allows patients to perform a cycling exercise and a concurrent cognitive task. Patients can cycle in a virtual park while performing a "go/no-go" task by selecting only specific targets appearing along the way. The difficulty of the practice can be adjusted by the therapists, while the physiological response is continuously monitored through wearable sensors to ensure safety. The application has been integrated into the VRRS system by Khymeia. In the next months, a study to assess the feasibility of a complete telerehabilitation program based on physical and cognitive training will take place. Such a program will combine the existing VRRS exercises and the cardio-respiratory fitness exercise provided by the ARTEDIA application. Feasibility, acceptance, and usability will be assessed from both the patients' and the therapists' sides

    Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing

    Get PDF
    Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1–V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacer and Enterococcus predominated in the community generated by V4–V6 primers, and the most numerous genera in the V7–V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4–V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7–V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1–V3 and V7–V9 primers providesd results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities

    Microbial Co-occurrence Relationships in the Human Microbiome

    Get PDF
    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.National Institutes of Health (U.S.) (grant CA139193)Fonds Wetenschappelijk Onderzoek – VlaanderenJuvenile Diabetes Research Foundation InternationalNational Institutes of Health (U.S.) (grant NIH U54HG004969)Crohn's and Colitis Foundation of AmericaNational Science Foundation (U.S.) (NSF DBI-1053486)United States. Army Research Office (ARO W911NF-11-1-0473)National Institutes of Health (U.S.) (grant NIH 1R01HG005969

    Diversity of 23S rRNA Genes within Individual Prokaryotic Genomes

    Get PDF
    The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy

    Advancing tools to promote health equity across European Union regions : The EURO-HEALTHY project

    Get PDF
    Population health measurements are recognised as appropriate tools to support public health monitoring. Yet, there is still a lack of tools that offer a basis for policy appraisal and for foreseeing impacts on health equity. In the context of persistent regional inequalities, it is critical to ascertain which regions are performing best, which factors might shape future health outcomes and where there is room for improvement. Under the EURO-HEALTHY project, tools combining the technical elements of multi-criteria value models and the social elements of participatory processes were developed to measure health in multiple dimensions and to inform policies. The flagship tool is the Population Health Index (PHI), a multidimensional measure that evaluates health from the lens of equity in health determinants and health outcomes, further divided into sub-indices. Foresight tools for policy analysis were also developed, namely: (1) scenarios of future patterns of population health in Europe in 2030, combining group elicitation with the Extreme-World method and (2) a multi-criteria evaluation framework informing policy appraisal (case study of Lisbon). Finally, a WebGIS was built to map and communicate the results to wider audiences. The Population Health Index was applied to all European Union (EU) regions, indicating which regions are lagging behind and where investments are most needed to close the health gap. Three scenarios for 2030 were produced - (1) the 'Failing Europe' scenario (worst case/increasing inequalities), (2) the 'Sustainable Prosperity' scenario (best case/decreasing inequalities) and (3) the 'Being Stuck' scenario (the EU and Member States maintain the status quo). Finally, the policy appraisal exercise conducted in Lisbon illustrates which policies have higher potential to improve health and how their feasibility can change according to different scenarios. The article makes a theoretical and practical contribution to the field of population health. Theoretically, it contributes to the conceptualisation of health in a broader sense by advancing a model able to integrate multiple aspects of health, including health outcomes and multisectoral determinants. Empirically, the model and tools are closely tied to what is measurable when using the EU context but offering opportunities to be upscaled to other settings
    corecore