4 research outputs found

    Comparative analysis of optimal power flow in renewable energy sources based microgrids

    Get PDF
    Adaptation of renewable energy is inevitable. The idea of microgrid offers integration of renewable energy sources with conventional power generation sources. In this research, an operative approach was proposed for microgrids comprising of four different power generation sources. The microgrid is a way that mixes energy locally and empowers the end-users to add useful power to the network. IEEE-14 bus system-based microgrid was developed in MATLAB/Simulink to demonstrate the optimal power flow. Two cases of battery charging and discharging were also simulated to evaluate its realization. The solution of power flow analysis was obtained from the Newton–Raphson method and particle swarm optimization method. A comparison was drawn between these methods for the proposed model of the microgrid on the basis of transmission line losses and voltage profile. Transmission line losses are reduced to about 17% in the case of battery charging and 19 to 20% in the case of battery discharging when system was analyzed with the particle swarm optimization. Particle swarm optimization was found more promising for the deliverance of optimal power flow in the renewable energy sources-based microgrid

    EFFECT OF WASTE POLYETHYLENE TEREPHTHALATE BOTTLE FIBERS ON THE MECHANICAL PROPERTIES OF RECYCLED CONCRETE

    Get PDF
    The use of beverage containers, most of which are made of polyethylene terephthalate bottles, results in several problems with regard to sustainability. The purpose of this study was to evaluate and contrast the impact on the mechanical characteristics of concrete caused by the incorporation of polyethylene terephthalate bottle fibres in varying amounts. These fibres were generated by cutting bottles into precise dimensions (width of 5 mm and length of 25 mm), and they were used in various concentrations such as 0,25 %; 0,5 % and 1,0 % by volume of concrete with different amounts of recycled aggregate. To verify the reliability of the outcomes of the experiment, a statistical analysis was performed. According to the results, the concrete that contained 0 % recycled coarse aggregate and varying amounts of plastic fibres had a greater degree of workability compared with concrete that had either 50 % or 100 % recycled coarse aggregate. The comprehensive test findings demonstrated that the addition of polyethylene terephthalate fibres decreased compressive and split tensile strength. The study concluded that certain parameters, such as plastic fibres, curing days, and recycled aggregate, interacted together in a synergistic manner to impact the compressive and splitting tensile strengths of the concrete, with proposed equations for their prediction

    Flood Frequency Analysis and Hydraulic Design of Bridge at Mashan on River Kunhar

    No full text
    Kunhar River hydrology and hydraulic design of a bridge on this river are being studied using HEC-Geo-RAS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). The river flows in the northern part of Pakistan and is 170 km long. On both sides of the river, there are residential settlements. The river hydraulics is studied by using 30-metre remotely sensed shuttle radar topographic mission - digital elevation model (SRTM DEM) and Arc Map. 32 cross-sections are imported from Geographic Information System (GIS) to HEC-RAS. On historical peak flow results, the extreme value frequency distribution is applied, and a flood is determined for a 100-year return period, with a discharge estimated as 2223 cubic metres. Three steady flow profiles are adopted for HEC-RAS, the first is for the maximum historical peak data, the second is for the 100-year return period, and the third profile is for the latter 100-year period with a safety factor of 1.28. With remote sensing-based assessments, the proposed location for a bridge is determined and then verified with a field survey which was physically conducted. The maximum water height estimated in the river is about 4.26 m. This bridge will facilitate about 50 thousand population of Masahan and its surroundings. It will create a shortest link between Khyber Pakhtunkhwa and Azad Kashmir and thus will enhance tourism and trade activities
    corecore