158 research outputs found

    Analysis of a 290-Year Net Accumulation Time Series from Mt. Logan, Yukon

    Get PDF
    A 102.5-m mechanically continuous firn and ice core sequence retrieved from the Northwest Col of Mt. Logan (latitude 60°30\u27N; longitude 140°35\u27W; site location 5340 m a.s.l.) in the Yukon Territory, Canada, has been analyzed continuously for stable isotopes, pH and liquid electrolytic conductivity. Specific sections of the core have been analyzed for total β-activity (0-22 m) and trace ion concentrations (across major volcanic events) in order to date the core. In the lower half of the core, nitrate and some other ionic species are used to identify annual increments except between AD 1693 and AD 1720 and between AD 1729 and AD 1735 where only average annual increments are given. Annual increments were converted to water equivalents, then corrected for ice flow thinning as well as for origin, since a significant net accumulation gradient exists across the borehole site. The time series was subjected to cross correlation analysis, using instrumental data for the last 80 years, and to spectral analyses, using a 250-year sequence

    Depth- and range-dependent variation in the performance of aquatic telemetry systems: Understanding and predicting the susceptibility of acoustic tag-receiver pairs to close proximity detection interference

    Get PDF
    BACKGROUND: Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI) is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. METHODS: A series of experiments were designed to develop and validate our model. Deep (300 m) and shallow (25 m) ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver\u27s blanking interval cause CPDI effects. RESULTS: Analysis of empirical data estimated the average maximum detection radius (AMDR), the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was estimated within a 276.5 m radius of the receiver. These empirical estimations were consistent with mechanistic model predictions. CPDI affected detection at distances closer than 259-326 m from receivers. AMDR determined from the shallow ranging experiment was between 278 and 290 m with CPDI neither predicted nor observed. Results of validation experiments were consistent with mechanistic model predictions. Finally, we were able to predict detection/nondetection with 95.7% accuracy using the mechanistic model\u27s criterion when simulating transmissions with and without multipaths. DISCUSSION: Close proximity detection interference results from combinations of depth and distance that produce reflected signals arriving after a receiver\u27s blanking interval has ended. Deployment scenarios resulting in CPDI can be predicted with the proposed mechanistic model. For deeper deployments, sea-surface reflections can produce CPDI conditions, resulting in transmission rejection, regardless of the reflective properties of the seafloor

    Climatic indicators in an ice core from the Yukon [abstract]

    Get PDF
    EXTRACT (SEE PDF FOR FULL ABSTRACT): Stable isotope data obtained from snow and ice cores retrieved from an altitude of 5340m on Mt. Logan (60°30'N; 140°36'W) indicate that "isotopic seasons" are not generally in phase with calendar seasons. The former are phase lagged with respect to the latter by up to several months and appear to be correlated with SST'S and ocean heat transfer curves and/or the position of the Aleutian low rather than with air temperature or the temperature difference between the ocean surface and the core site

    Role of geometry, substrate and atmosphere on performance of OFETs based on TTF derivatives

    Get PDF
    Abstract We report a comparative study of OFET devices based on zone-cast layers of three tetrathiafulvalene (TTF) derivatives in three configurations of electrodes in order to determine the best performing geometry. The first testing experiments were performed using SiO 2 /Si substrates. Then the optimum geometry was employed for the preparation of flexible OFETs using Parylene C as both substrate and dielectric layer yielding, in the best case, to devices with ÎĽ FET = 0.1 cm 2 /Vs. With the performed bending tests we determined the limit of curvature radius for which the performance of the OFETs is not deteriorated irreversibly. The investigated OFETs are sensitive to ambient atmosphere, showing reversible increase of the source to drain current upon exposition to air, what can be explained as doping of TTF derivative by oxygen or moisture
    • …
    corecore