328 research outputs found
Modelling the potential for permafrost development on a radioactive waste geological disposal facility in Great Britain
The safety case for a geological disposal facility (GDF) for radioactive waste based in Great Britain must consider the potential impact on the repository environment of permafrost during the 1 million years following GDF closure. The depth of penetration of permafrost, defined as ground which remains at or below 0 °C for at least 2 consecutive years, has been modelled for a future climate that uses the climate of the last glacialâinterglacial cycle as an analogue. Two future climates are considered; an average estimate case considered to be the best estimate of ground surface temperatures during the last glacialâinterglacial cycle, and a cold estimate case considered to be an extreme cold, but plausible future climate. Maximum modelled permafrost thicknesses across Great Britain range from 20 to 180 m for the average estimate climate and 180â305 m for the cold estimate climate. The presence of ice cover is an important determinant on permafrost development. Thick permafrost evolves during long periods of cold-based ice cover and during periods of ice retreat that results in ground exposure to very cold air temperatures. Conversely, warm-based ice has an insulating effect, shielding the ground from cold air temperatures that retards permafrost development. For a GDF at a depth greater than that predicted to be directly affected by permafrost, phenomena associated with permafrost, e.g., enhanced groundwater salinity at depth, will need to be taken into account when considering the impact on the engineered and natural barriers associated with a GDF
Lognormal Properties of SGR 1806-20 and Implications for Other SGR Sources
The time interval between successive bursts from SGR 1806-20 and the
intensity of these bursts are both consistent with lognormal distributions.
Monte Carlo simulations of lognormal burst models with a range of distribution
parameters have been investigated. The main conclusions are that while most
sources like SGR 1806-20 should be detected in a time interval of 25 years,
sources with means about 100 times longer have a probability of about 5\% of
being detected in the same interval. A new breed of experiments that operate
for long periods are required to search for sources with mean recurrence
intervals much longer than SGR 1806-20.Comment: 4 pages, latex with seperate file containing 2 uuencoded, gzip'ed,
tarred, .eps figures. Replaced with file that does not use kluwer.sty to
allow automatic postscript generation. To appear in proceedings of ESLAB 2
Gamma Ray Bursts as Probes of Quantum Gravity
Gamma ray bursts (GRBs) are short and intense pulses of -rays
arriving from random directions in the sky. Several years ago Amelino-Camelia
et al. pointed out that a comparison of time of arrival of photons at different
energies from a GRB could be used to measure (or obtain a limit on) possible
deviations from a constant speed of light at high photons energies. I review
here our current understanding of GRBs and reconsider the possibility of
performing these observations.Comment: Lectures given at the 40th winter school of theretical physics:
Quantum Gravity and Phenomenology, Feb. 2004 Polan
A Partial-Closure Canonicity Test to Increase the Efficiency of CbO-Type Algorithms
Computing formal concepts is a fundamental part of Formal Concept Analysis and the design of increasingly efficient algorithms to carry out this task is a continuing strand of FCA research. Most approaches suffer from the repeated computation of the same formal concepts and, initially, algorithms concentrated on efficient searches through already computed results to detect these repeats, until the so-called canonicity test was introduced. The canonicity test meant that it was sufficient to examine the attributes of a computed concept to determine its newness: searching through previously computed concepts was no longer necessary. The employment of this test in Close-by-One type algorithms has proved to be highly effective. The typical CbO approach is to compute a concept and then test its canonicity. This paper describes a more efficient approach, whereby a concept need only be partially computed in order to carry out the test. Only if it passes the test does the computation of the concept need to be completed. This paper presents this âpartial-closureâ canonicity test in the In-Close algorithm and compares it to a traditional CbO algorithm to demonstrate the increase in efficiency
Searching for energetic cosmic axions in a laboratory experiment: testing the PVLAS anomaly
Astrophysical sources of energetic gamma rays provide the right conditions
for maximal mixing between (pseudo)scalar (axion-like) particles and photons if
their coupling is as strong as suggested by the PVLAS claim. This is
independent of whether or not the axion interaction is standard at all energies
or becomes supressed in the extreme conditions of the stellar interior. The
flux of such particles through the Earth could be observed using a metre long,
Tesla strength superconducting solenoid thus testing the axion interpretation
of the PVLAS anomaly. The rate of events in CAST caused by axions from the Crab
pulsar is also estimated for the PVLAS-favoured parameters.Comment: 5 pages, 3 figur
A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system
We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival CanadaâFranceâHawaii Telescope/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/Deep Imaging Multi-Object Spectrograph, Gemini/Gemini Multi-Object Spectrograph and Multiple Mirror Telescope/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous data sets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649
Diving deep into digital literacy:emerging methods for research
Literacy studies approaches have tended to adopt a position which enables ethnographic explorations of a wide range of âliteraciesâ. An important issue arising is the new challenge required for researchers to capture, manage, and analyse data that highlight the unique character of practices around texts in digital environments. Such inquiries, we argue, require multiple elements of data to be captured and analysed as part of effective literacy ethnographies. These include such things as the unfolding of digital texts, the activities around them, and features of the surrounding social and material environment. This paper addresses these methodological issues drawing from three educationally focused studies, and reporting their experiences and insights within uniquely different contexts. We deal with the issue of adopting new digital methods for literacy research through the notion of a âdeep diveâ to explore educational tasks in classrooms. Through a discussion of how we approached the capture and analysis of our data, we present methods to better understand digital literacies in education. We then outline challenges posed by our methods, how they can be used more broadly for researching interaction in digital environments, and how they augment transdisciplinary debates and trends in research methods
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
- âŠ