19 research outputs found
747-6 Myocardial Blood Flow in Aortic Regurgitation: Comparison of Global and Regional Blood Flow to Regional Wall Stresses
The impact of regional wall stress (WS) abnormalities on regional coronary flow (CBF) in aortic regurgitation (AR) is not known. However, the existence of such a relation is of potential importance since it might account in part for LV dysfunction and myocardial fibrosis seen in AR, and could suggest therapeutic strategies. We have previously developed and validated a method for calculating regional WS in the radial, circumferential and meridional directions from mid wall (MW) to apex (AP) and endocardium (ENDO) to epicardium (EPI) using a 4000 element model of the LV To define the relation of regional WS and CSF in AR, we applied our LV model in 5 normal (NL) and 4 AR rabbits in which regional CBF was measured using fluorescent microspheres. CBF and radial WS were as follows:CBF (ml/min/gm)Radial WS (Ă—103dynes/cm2)MWAPMWAPNLEPI2.491.308329*ENDO2.090.74133133*AREPI1.821.82*8638*ENDO1.410.77*133133**=p<0.001 (EPI vs ENDO for CSF, EPI to ENDO gradient in AR vs NL for radial WS)Thus, in AR, transmural CBF distribution varies significantly at the apex, while this tendency is less marked and less consistent in NL. No discernable transmural variation was apparent elsewhere in either group. These differences paralleled inversely the transmural variations in radial WS in AR vs NL. In contrast, meridional WS and circumferential WS were uniformly and significantly higher in AR than NL at apex and base (all p < 0.001), a pattern which bore no relation to regional CSF pattern. Thus, regional radial WS influences regional transmural CBF pattern in AR. The importance of this relation to regional LV function and regional myocardial fibrosis in AR now must be assessed
Architectures of control in consumer product design
Copyright @ 2005 Social Services Research GroupThe idea of architectures of control is introduced through examples ranging from urban planning to digital rights management, and the intentions behind their use in consumer products are examined, with reference to case studies of printer cartridges and proposed 'optimum lifetime products.' The reactions of the technical community and consumers themselves are also explored, along with some wider implications for society
Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community
Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.Fil: Klumper, Uli. Technical University of Denmark; DinamarcaFil: Riber, Leise. Universidad de Copenhagen; DinamarcaFil: Dechesne, Arnaud. Technical University of Denmark; DinamarcaFil: Sannazzaro, AnalĂa InĂ©s. Universidad de Copenhagen; DinamarcaFil: Hansen, Lars H.. Universidad de Copenhagen; Dinamarca. Aarhus University. Roskilde; DinamarcaFil: Sørensen, Søren. Universidad de Copenhagen; DinamarcaFil: Smets, Barth F. Technical University of Denmark; Dinamarc