727 research outputs found
Genetic mutations in pfcrt and pfmdr1 at the time of artemisinin combination therapy introduction in South Pacific islands of Vanuatu and Solomon Islands
Background: Chloroquine (CQ), alone or in combination with sulphadoxine-pyrimethamine, was widely used for the treatment of Plasmodium falciparum and Plasmodium vivax for several decades in both Vanuatu and Solomon Islands prior to the introduction of artemether-lumefantrine (AL) in 2008. However, the effect of chloroquine selection on parasite population, which may affect the efficacy of lumefantrine or other partner drugs of artemisinin, has not been well assessed. This study aims to provide baseline data on molecular markers (pfcrt and pfmdr1), along with the origins of pfcrt, prior to the introduction of AL.
Methods: Blood spots were obtained from epidemiological surveys conducted on Tanna Island, Tafea Province, Vanuatu and Temotu Province, Solomon Islands in 2008. Additional samples from Malaita Province, Solomon Islands were collected as part of an artemether-lumefantrine efficacy study in 2008. Plasmodium falciparum pfcrt and pfmdr1 genes were examined for polymorphisms. Microsatellite markers flanking pfcrt were also examined to ascertain origins of CQ resistance.
Results: Pfcrt analysis revealed 100% of parasites from Tafea Province, Vanuatu and Malaita Province, Solomon Islands and 98% of parasites from Temotu Province, Solomon Islands carried the K76T polymorphism that confers CQ resistance. Comparison of pfcrt allelic patterns and microsatellite markers flanking pfcrt revealed six haplotypes with more than 70% of isolates possessing haplotypes very similar to those observed in Papua New Guinea. The dominant (98.5%) pfmdr1 allele across all island groups was YYCND.
Conclusions: Prior to the introduction of AL in the Solomon Islands and Vanuatu, P. falciparum isolates possessed point mutations known to confer CQ resistance and possibly associated with a decreased susceptibility to quinine and halofantrine, but an increased susceptibility to artemisinin and lumefantrine. Overall, pfcrt allelic types and the flanking microsatellite markers exhibited similarities to those of Papua New Guinea, suggesting these parasites share a common ancestry. The current use of AL for both P. falciparum and P. vivax infections will enable changes in these markers, in the absence of CQ pressure, to be monitored
Inhibiting the Plasmodium eIF2α Kinase PK4 Prevents Artemisinin-Induced Latency
Artemisinin and its derivatives (ARTs) are frontline antimalarial drugs. However, ART monotherapy is associated with a high frequency of recrudescent infection, resulting in treatment failure. A subset of parasites is thought to undergo ART-induced latency, but the mechanisms remain unknown. Here, we report that ART treatment results in phosphorylation of the parasite eukaryotic initiation factor-2α (eIF2α), leading to repression of general translation and latency induction. Enhanced phosphorylated eIF2α correlates with high rates of recrudescence following ART, and inhibiting eIF2α dephosphorylation renders parasites less sensitive to ART treatment. ART-induced eIF2α phosphorylation is mediated by the Plasmodium eIF2α kinase, PK4. Overexpression of a PK4 dominant-negative or pharmacological inhibition of PK4 blocks parasites from entering latency and abolishes recrudescence after ART treatment of infected mice. These results show that translational control underlies ART-induced latency and that interference with this stress response may resolve the clinical problem of recrudescent infection
Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum
Funding Information: We would like to thank the participants in studies contributing clinical samples from which the parasite WGS data were generated, as well as the clinical investigators at the Armed Forces Research Institute of Medical Sciences who conducted the studies contributing parasite isolates to our in-house data set. This publication uses data from the MalariaGEN Consortium and Plasmodium falciparum Community Project as described in “An open data set of Plasmodium falciparum genome variation in 7000 worldwide samples. MalariaGEN et al., Wellcome Open Research 2021642 DOI: 10.12688/wellcomeopenres.16168.1.” This work was supported by NIH 1R01AI145852 granted to ST-H and TDO by the U.S. National Institutes of Health. Publisher Copyright: © The Author(s) 2024.Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population’s background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.publishersversionpublishe
Increased prevalence of the pfdhfr/phdhps quintuple mutant and rapid emergence of pfdhps resistance mutations at codons 581 and 613 in Kisumu, Kenya
<p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance in Kenya prompted two drug policy changes within a decade: sulphadoxine-pyrimethamine (SP) replaced chloroquine (CQ) as the first-line anti-malarial in 1998 and artemether-lumefantrine (AL) replaced SP in 2004. Two cross-sectional studies were conducted to monitor changes in the prevalence of molecular markers of drug resistance over the period in which SP was used as the first-line anti-malarial. The baseline study was carried out from 1999-2000, shortly after implementation of SP, and the follow-up study occurred from 2003-2005, during the transition to AL.</p> <p>Materials and methods</p> <p>Blood was collected from malaria smear-positive, symptomatic patients presenting to outpatient centers in Kisumu, Kenya, during the baseline and follow-up studies. Isolates were genotyped at codons associated with SP and CQ resistance. <it>In vitro </it>IC<sub>50 </sub>values for antifolates and quinolones were determined for isolates from the follow-up study.</p> <p>Results</p> <p>The prevalence of isolates containing the <it>pfdhfr </it>N51I/C59R/S108N/<it>pfdhps </it>A437G/K540E quintuple mutant associated with SP-resistance rose from 21% in the baseline study to 53% in the follow-up study (p < 0.001). Isolates containing the <it>pfdhfr </it>I164L mutation were absent from both studies. The <it>pfdhps </it>mutations A581G and A613S/T were absent from the baseline study but were present in 85% and 61%, respectively, of isolates from the follow-up study. At follow-up, parasites with mutations at five <it>pfdhps </it>codons, 436, 437, 540, 581, and 613, accounted for 39% of isolates. The CQ resistance-associated mutations <it>pfcrt </it>K76T and <it>pfmdr1 </it>N86Y rose from 82% to 97% (p = 0.001) and 44% to 76% (p < 0.001), respectively, from baseline to follow-up.</p> <p>Conclusions</p> <p>During the period in which SP was the first-line anti-malarial in Kenya, highly SP-resistant parasites emerged, including isolates harboring <it>pfdhps </it>mutations not previously observed there. SP continues to be widely used in Kenya; however, given the highly resistant genotypes observed in this study, its use as a first-line anti-malarial should be discouraged, particularly for populations without acquired immunity to malaria. The increase in the <it>pfcrt </it>K76T prevalence, despite efforts to reduce CQ use, suggests that either these efforts are not adequate to alleviate CQ pressure in Kisumu, or that drug pressure is derived from another source, such as the second-line anti-malarial amodiaquine.</p
Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. We conducted global transcriptome and proteome analyses of three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high vs. low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage like (THP-1), small airway epithelial (SAE), and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 μg/ml) and high (100 μg/ml) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p<0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell-type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might therefore indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p<0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT regulated pathways indicating increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might therefore underlie cellular responses to high and low NP toxicity, respectively
Radio Astronomy
Contains reports on four research projects.Joint Services Electronics Program (Contract DAAB07-71-C-0300)California Institute of Technology (Contract 952568)National Aeronautics and Space Administration (Contract NAS1-10693)National Science Foundation (Grant GP-21348A#2
Yellow Fever Outbreak, Imatong, Southern Sudan
In May 2003, the World Health Organization received reports about a possible outbreak of a hemorrhagic disease of unknown cause in the Imatong Mountains of southern Sudan. Laboratory investigations were conducted on 28 serum samples collected from patients in the Imatong region. Serum samples from 13 patients were positive for immunoglobulin M antibody to flavivirus, and serum samples from 5 patients were positive by reverse transcription–polymerase chain reaction with both the genus Flavivirus–reactive primers and yellow fever virus–specific primers. Nucleotide sequencing of the amplicons obtained with the genus Flavivirus oligonucleotide primers confirmed yellow fever virus as the etiologic agent. Isolation attempts in newborn mice and Vero cells from the samples yielded virus isolates from five patients. Rapid and accurate laboratory diagnosis enabled an interagency emergency task force to initiate a targeted vaccination campaign to control the outbreak
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in p-pbar Collisions at sqrt{s}=1.96 TeV
This paper describes the first measurement of b-quark fragmentation fractions
into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result
is based on a 360 pb-1 sample of data collected with the CDF II detector in
p-pbar collisions at sqrt{s}=1.96 TeV. Semileptonic decays of B0, B+, and B_s
mesons, as well as Lambda_b baryons, are reconstructed. For an effective bottom
hadron p_T threshold of 7 GeV/c, the fragmentation fractions are measured to be
f_u/f_d=1.054 +/- 0.018 (stat) +0.025-0.045(sys) +/- 0.058 (Br),
f_s/(f_u+f_d)=0.160 +/- 0.005 (stat) +0.011-0.010 (sys) +0.057-0.034 (Br), and
f_{Lambda_b}/(f_u+f_d)=0.281\pm0.012 (stat) +0.058-0.056 (sys) +0.128-0.086
(Br), where the uncertainty (Br) is due to uncertainties on measured branching
ratios. The value of f_s/(f_u+f_d) agrees within one standard deviation with
previous CDF measurements and the world average of this quantity, which is
dominated by LEP measurements. However, the ratio f_{Lambda_b}/(f_u+f_d) is
approximately twice the value previously measured at LEP. The approximately 2
sigma discrepancy is examined in terms of kinematic differences between the two
production environments.Comment: Submitted to PRD, 54 pages, 53 plot
Search for a Higgs Boson Produced in Association with a W Boson in pbar-p Collisions at sqrt{s} = 1.96 TeV
We present a search for a standard model Higgs boson produced in association
with a W boson using 2.7 1/fb of integrated luminosity of pbar-p collision data
taken at sqrt{s} = 1.96 TeV. Limits on the Higgs boson production rate are
obtained for masses between 100 GeV and 150 GeV. Through the use of
multivariate techniques, the analysis achieves an observed (expected) 95%
confidence level upper limit of 5.6 (4.8) times the theoretically expected
production cross section for a standard model Higgs boson with a mass of 115
GeV.Comment: submitted to Phys. Rev. Let
- …