3 research outputs found

    Issues on human acceleration tolerance after long-duration space flights

    Get PDF
    This report reviewed the literature on human tolerance to acceleration at 1 G and changes in tolerance after exposure to hypogravic fields. It was found that human tolerance decreased after exposure to hypokinetic and hypogravic fields, but the magnitude of such reduction ranged from 0 to 30 percent for plateau G forces and 30 to 70 percent for time tolerance on sustained G forces. A logistic regression model of the probability of individuals with 25 percent reduction in +Gz tolerance after 1 to 41 days of hypogravic exposures was constructed. The estimated values from the model showed a good correlation with the observed data. A brief review of the need for in-flight centrifuge during long-duration missions was also presented. Review of the available data showed that the use of countermeasures (such as anti-G suits, periodic acceleration, and exercise) reduced the decrement in acceleration tolerance after long-duration space flights. Areas of further research include quantification of the effect of countermeasures on tolerance, and methods to augment tolerance during and after exposures to hypogravic fields. Such data are essential for planning long-duration human missions

    Precision metering of microliter volumes of biological fluids in micro-gravity

    Get PDF
    Concepts were demonstrated and investigated for transferring accurately known and reproducible microliter volumes of biological fluids from sample container onto dry chemistry slides in microgravity environment. Specific liquid transfer tip designs were compared. Information was obtained for design of a liquid sample handling system to enable clinical chemical analysis in microgravity. Disposable pipet tips and pipet devices that were designed to transfer microliter volumes of biological fluid from a (test tube) sample container in 1-G environment were used during microgravity periods of parabolic trajectories of the KC-135 aircraft. The transfer process was recorded using charge coupled device camera and video cassette equipment. Metering behavior of water, a synthetic aqueous protein solution, and anticoagulated human blood was compared. Transfer of these liquids to 2 substrate materials representative of rapidly wettable and slowly wettable dry chemistry slide surface was compared

    Immersed False Vertical Room

    No full text
    corecore