582 research outputs found
Journal Staff
A time-dependent coordinate transformation of a constant coeffcient hyperbolic equation which results in a variable coeffcient problem is considered. By using the energy method, we derive well-posed boundary conditions for the continuous problem. It is shown that the number of boundary conditions depend on the coordinate transformation. By using Summation-by-Parts (SBP) operators for the space discretization and weak boundary conditions, an energy stable finite dieffrence scheme is obtained. We also show how to construct a time-dependent penalty formulation that automatically imposes the right number of boundary conditions. Numerical calculations corroborate the stability and accuracy of the approximations
Atomistic spin dynamics of the CuMn spin glass alloy
We demonstrate the use of Langevin spin dynamics for studying dynamical
properties of an archetypical spin glass system. Simulations are performed on
CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the
system to the low temperature phase. The system is modeled by a Heisenberg
Hamiltonian where the Heisenberg interaction parameters are calculated by means
of first-principles density functional theory. Simulations are performed by
numerically solving the Langevin equations of motion for the atomic spins. It
is shown that dynamics is governed, to a large degree, by the damping parameter
in the equations of motion and the system size. For large damping and large
system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure
A Classical Solution in Six-dimensional Gauge Theory with Higher Derivative Coupling
We show that the spin connection of the standard metric on a six-dimensional
sphere gives an exact solution to the generalized self-dual equations suggested
by Tchrakian some years ago. We work on an SO(6) gauge theory with a
higher-derivative coupling term. The model consists of vector fields only. The
pseudo-energy is bound from below by a topological charge which is proportional
to the winding number of spatial S^5 around the internal space SO(6). The fifth
homotopy group of SO(6) is, indeed, Z. The coupling constant of higher
derivative term is quadratic in the radius of the underlying space S^6.Comment: 7 pages, comments and a reference added, typos correcte
Simulation of a spin-wave instability from atomistic spin dynamics
We study the spin dynamics of a Heisenberg model at finite temperature in the
presence of an external field or a uniaxial anisotropy. For the case of the
uniaxial anisotropy our simulations show that the macro moment picture breaks
down. An effect which we refer to as a spin-wave instability (SWI) results in a
non-dissipative Bloch-Bloembergen type relaxation of the macro moment where the
size of the macro moment changes, and can even be made to disappear. This
relaxation mechanism is studied in detail by means of atomistic spin dynamics
simulations.Comment: 8 pages, 12 figures, submitted to PR
Microscopic origin of Heisenberg and non-Heisenberg exchange interactions in ferromagnetic bcc Fe
By means of first principles calculations we investigate the nature of
exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the
basic electronic structure reveals a drastic difference between the
orbitals of and symmetries. The latter ones define the shape of
the Fermi surface, while the former ones form weakly-interacting impurity
levels. We demonstrate that, as a result of this, in Fe the orbitals
participate in exchange interactions, which are only weakly dependent on the
configuration of the spin moments and thus can be classified as
Heisenberg-like. These couplings are shown to be driven by Fermi surface
nesting. In contrast, for the states the Heisenberg picture breaks down,
since the corresponding contribution to the exchange interactions is shown to
strongly depend on the reference state they are extracted from. Our analysis of
the nearest-neighbour coupling indicates that the interactions among
states are mainly proportional to the corresponding hopping integral and thus
can be attributed to be of double-exchange origin.Comment: 5 pages, 4 figure
Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study
The dynamical behavior of the magnetism of diluted magnetic semiconductors
(DMS) has been investigated by means of atomistic spin dynamics simulations.
The conclusions drawn from the study are argued to be general for DMS systems
in the low concentration limit, although all simulations are done for 5%
Mn-doped GaAs with various concentrations of As antisite defects. The
magnetization curve, , and the Curie temperature have been
calculated, and are found to be in good correspondence to results from Monte
Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium
behavior of the magnetic pair correlation function have been extracted. The
dynamics of DMS systems reveals a substantial short ranged magnetic order even
at temperatures at or above the ordering temperature, with a non-vanishing pair
correlation function extending up to several atomic shells. For the high As
antisite concentrations the simulations show a short ranged anti-ferromagnetic
coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently
large concentrations we do not observe any long ranged ferromagnetic
correlation. A typical dynamical response shows that starting from a random
orientation of moments, the spin-correlation develops very fast ( 1ps)
extending up to 15 atomic shells. Above 10 ps in the simulations, the
pair correlation is observed to extend over some 40 atomic shells. The
autocorrelation function has been calculated and compared with ferromagnets
like bcc Fe and spin-glass materials. We find no evidence in our simulations
for a spin-glass behaviour, for any concentration of As antisites. Instead the
magnetic response is better described as slow dynamics, at least when compared
to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure
Regulation of intracellular pH by electrogenic Na+/HCO3-co-transporters in embryonic neural stem cell-derived radial glia-like cells
A stroke causes a hypoxic brain microenvironment that alters neural cell metabolism resulting in cell membrane hyperpolarization and intracellular acidosis. We studied how intracellular pH (pH(i)) is regulated in differentiated mouse neural progenitor cells during hyperpolarizing conditions, induced by prompt reduction of the extra cellular K+ concentration. We found that the radial glia-like population in differentiating embryonic neural progenitor cells, but not neuronal cells, was rapidly acidified under these conditions. However, when extra cellular calcium was removed, an instant depolarization and recovery of the pH(i), back to normal levels, took place. The rapid recovery phase seen in the absence of calcium, was dependent on extracellular bicarbonate and could be inhibited by 50859, a potent Na/HCO3 cotransporter inhibitor. Immunostaining and PCR data, showed that NBCe1 (SLC4A4) and NBCn1 (SLC4A7) were expressed in the cell population and that the pH(i) recovery in the radial glial-like cells after calcium removal was mediated mainly by the electrogenic sodium bicarbonate transporter NBCe1 (SLC4A4). Our results indicate that extracellular calcium might hamper pH(i) regulation and Na/HCO3 cotransporter activity in a brain injury microenvironment. Our findings show that the NBC-type transporters are the main pH(i) regulating systems prevailing in glia-like progenitor cells and that these calcium sensitive transporters are important for neuronal progenitor cell proliferation, survival and neural stem cell differentiation.Peer reviewe
Tannic acid inhibits electrogenic Na+/HCO3- co-transporter activity in embryonic neural stem cell-derived radial glial-like cells
Self-renewing neural stem cells and progenitor cells are cell populations that generate radial glial cells and neurons through asymmetric division. Regulation of intracellular pH in stem cells with high metabolic activity is critical for both cell signaling and proliferation. We have recently found that a S0859-inhibitable electrogenic Na+/HCO3- co-transporter (NBCe1, Slc4a4), is the primary pH(i) regulatory mechanism in stem cell-derived radial glial-like cells. Here we show, by using the voltage-sensitive fluorescent dye DiBAC 4(3) and BCECF, a pH-sensitive dye, that an antioxidant, tannic acid (100 mu M), can inhibit potassium- and calcium-dependent rapid changes in membrane potential and NBCe1 mediated pH i regulation in brain-derived glial-like cells in vitro. Furthermore, neural stem cell differentiation and neurosphere formation (proliferation) were completely inhibited by tannic acid. The present study provides evidence that tannic acid is a natural inhibitor of NBCe1. It is tempting to speculate that tannic acid or related compounds that inhibits NBCe1-mediated pH(i) regulation in glial-like cells may also have bearing on the treatment of glial neoplasms. NeuroReport 31: 57-63 Copyright (c) 2019 The Author(s). Published by Wolters Kluwer Health, Inc.Peer reviewe
Simulation of a spin-wave instability from atomistic spin dynamics
We study the spin dynamics of a Heisenberg model at finite temperature in the
presence of an external field or a uniaxial anisotropy. For the case of the
uniaxial anisotropy our simulations show that the macro moment picture breaks
down. An effect which we refer to as a spin-wave instability (SWI) results in a
non-dissipative Bloch-Bloembergen type relaxation of the macro moment where the
size of the macro moment changes, and can even be made to disappear. This
relaxation mechanism is studied in detail by means of atomistic spin dynamics
simulations.Comment: 8 pages, 12 figures, submitted to PR
- …