18 research outputs found

    Laboratory Analysis of Tularemia in Wild-Trapped, Commercially Traded Prairie Dogs, Texas, 2002

    Get PDF
    Oropharyngeal tularemia was identified as the cause of a die-off in captured wild prairie dogs at a commercial exotic animal facility in Texas. From this point source, Francisella tularensis–infected prairie dogs were traced to animals distributed to the Czech Republic and to a Texas pet shop. F. tularensis culture isolates were recovered tissue specimens from 63 prairie dogs, including one each from the secondary distribution sites. Molecular and biochemical subtyping indicated that all isolates were F. tularensis subsp. holarctica (Type B). Microagglutination assays detected antibodies against F. tularensis, with titers as great as 1:4,096 in some live animals. All seropositive animals remained culture positive, suggesting that prairie dogs may act as chronic carriers of F. tularensis. These findings demonstrate the need for additional studies of tularemia in prairie dogs, given the seriousness of the resulting disease, the fact that prairie dogs are sold commercially as pets, and the risk for pet-to-human transmission

    Bacteriolytic Activity of Selected Vertebrate Sera for \u3ci\u3eBorrelia burgdorferi\u3c/i\u3e Sensu Stricto and \u3ci\u3eBorrelia bissettii\u3c/i\u3e

    Get PDF
    An in vitro assay to evaluate the bacteriolytic activity of the complement pathway was applied to 2 strains of Borrelia bissettii, CO501 and DN127, and compared with that of B. burgdorferi sensu stricto B31. Sera from mule deer ( Odocoileus hemionus) and the Western Fence lizard ( Sceloporus occidentalis) were completely borreliacidal for B. burgdorferi and for both strains of B. bissettii. Serum from Bobwhite quail ( Colinus virginianus) was nonlytic for B. burgdorferi and partially lytic for B. bissettii strains, CO-501 and DN127. Serum from a New Zealand White rabbit ( Oryctolagus cuniculus) was partially lytic for all 3 strains of Borrelia, whereas serum from white-footed mice ( Peromyscus leucopus) were nonlytic for all 3 Borrelia strains. The spectrum of complement sensitivity of B. bissettii appears to be similar to that of European B. afzelii in that tested rodent serum is not lytic to these 2 genospecies. Interestingly, both B. bissettii and B. afzelii have been found to be closely associated with rodents. Complement sensitivity demonstrated in these experiments may suggest and possibly predict specific reservoir–host associations

    A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil

    No full text
    As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCRRFLP strategy is presented to distinguish between these two groups of bacteria

    Comparison of Disseminated and Nondisseminated Strains of Borrelia burgdorferi Sensu Stricto in Mice Naturally Infected by Tick Bite

    No full text
    Clinical isolates of Borrelia burgdorferi sensu stricto have been categorized into disseminated and nondisseminated groups based on distinct ribosomal spacer restriction fragment length polymorphism genotypes (RSTs). In order to determine whether transmission by tick bite would alter the dissemination dynamics and disease produced by distinct genotypes, disseminated isolates (RST1), nondisseminated isolates (RST3), and a standard laboratory strain (B-31) were established in a murine cycle utilizing infections transmitted by ticks. B-31 spirochetes circulated in the blood of inbred C3H/HeJ mice longer than in the blood of outbred mice. The majority of C3H mice exposed to RST1-infected ticks contained cultivable spirochetes in their blood for up to 17 days; in contrast, mice exposed to RST3 isolates demonstrated a precipitous decline in infection after day 7 postexposure. A quantitative PCR (q-PCR) assay demonstrated that the densities of spirochetes in blood were similar for the RST1 and RST3 isolates, except during the 2nd week postexposure, when the RST1 isolates displayed a markedly higher density in blood. Spirochete load in the heart and bladder of infected mice was measured by q-PCR at 8 weeks postexposure; the numbers of spirochetes in these tissues were similar for mice infected with either disseminated or nondisseminated strains. Similarly, histopathology samples of heart, bladder, and joint tissue obtained at 8 weeks postexposure did not reveal greater pathology in mice infected with the disseminated isolates. We conclude that although the spirochetemia induced by tick-transmitted disseminated isolates was more intense and of longer duration than that induced by nondisseminated isolates, the resultant pathologies produced by these strains were ultimately similar
    corecore