6,295 research outputs found
Massive molecular outflows at high spatial resolution
We present high-spatial resolution Plateau de Bure Interferometer CO(2-1) and
SiO(2-1) observations of one intermediate-mass and one high-mass star-forming
region. The intermediate-mass region IRAS20293+3952 exhibits four molecular
outflows, one being as collimated as the highly collimated jet-like outflows
observed in low-mass star formation sources. Furthermore, comparing the data
with additional infrared H2 and cm observations we see indications that the
nearby ultracompact HII region triggers a shock wave interacting with the
outflow. The high-mass region IRAS19217+1651 exhibits a bipolar outflow as well
and the region is dominated by the central driving source. Adding two more
sources from the literature, we compare position-velocity diagrams of the
intermediate- to high-mass sources with previous studies in the low-mass
regime. We find similar kinematic signatures, some sources can be explained by
jet-driven outflows whereas other are better constrained by wind-driven models.
The data also allow to estimate accretion rates varying from a few times
10^{-5}Msun/yr for the intermediate-mass sources to a few times 10^{-4}Msun/yr
for the high-mass source, consistent with models explaining star formation of
all masses via accretion processes.Comment: 14 pages text, 4 tables, 8 figures, accepted for Ap
BIRP: Software for interactive search and retrieval of image engineering data
Better Image Retrieval Programs (BIRP), a set of programs to interactively sort through and to display a database, such as engineering data for images acquired by spacecraft is described. An overview of the philosophy of BIRP design, the structure of BIRP data files, and examples that illustrate the capabilities of the software are provided
A new approach to finding galaxy groups using Markov Clustering
We present a proof of concept of a new galaxy group finder method, Markov graph CLustering (MCL) that naturally handles probabilistic linking criteria. We introduce a new figure of merit, the variation of information (VI) statistic, used to optimize the free parameter(s) of the MCL algorithm. We explain that the common friends-of-friends (FoF) method is a subset of MCL. We test MCL in real space on a realistic mock galaxy catalogue constructed from an N-body simulation using the galform model. With a fixed linking length FoF produces the best group catalogues as quantified by the VI statistic. By making the linking length sensitive to the local galaxy density, the quality of the FoF and MCL group catalogues improve significantly, with MCL being preferred over FoF due to a smaller VI value. The MCL group catalogue recovers accurately the underlying halo multiplicity function at all multiplicities. MCL provides better and more consistent group purity and halo completeness values at all multiplicities than FoF. As MCL allows for probabilistic pairwise connections, it is a promising algorithm to find galaxy groups in photometric surveys
Quantifying cosmic variance
We determine an expression for the cosmic variance of any "normal" galaxy
survey based on examination of M* +/- 1 mag galaxies in the SDSS DR7 data cube.
We find that cosmic variance will depend on a number of factors principally:
total survey volume, survey aspect ratio, and whether the area surveyed is
contiguous or comprised of independent sight-lines. As a rule of thumb cosmic
variance falls below 10% once a volume of 10^7h_0.7^-3Mpc^3 is surveyed for a
single contiguous region with a 1:1 aspect ratio. Cosmic variance will be lower
for higher aspect ratios and/or non-contiguous surveys. Extrapolating outside
our test region we infer that cosmic variance in the entire SDSS DR7 main
survey region is ~7% to z < 0.1. The equation obtained from the SDSS DR7 region
can be generalised to estimate the cosmic variance for any density measurement
determined from normal galaxies (e.g., luminosity densities, stellar mass
densities and cosmic star-formation rates) within the volume range 10^3 to 10^7
h^-3_0.7Mpc^3. We apply our equation to show that 2 sightlines are required to
ensure cosmic variance is <10% in any ASKAP galaxy survey (divided into dz ~0.1
intervals, i.e., ~1 Gyr intervals for z <0.5). Likewise 10 MeerKAT sightlines
will be required to meet the same conditions. GAMA, VVDS, and zCOSMOS all
suffer less than 10% cosmic variance (~3%-8%) in dz intervals of 0.1, 0.25, and
0.5 respectively. Finally we show that cosmic variance is potentially at the
50-70% level, or greater, in the HST Ultra Deep Field depending on assumptions
as to the evolution of clustering. 100 or 10 independent sightlines will be
required to reduce cosmic variance to a manageable level (<10%) for HST ACS or
HST WFC3 surveys respectively (in dz ~ 1 intervals). Cosmic variance is
therefore a significant factor in the z>6 HST studies currently underway.Comment: Accepted for publication in MNRA
Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system
Realistic, first-principles-based interatomic potentials have been used in
molecular dynamics simulations to study the effect of cation composition on the
ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical
properties to the degree of lattice disorder. Across the composition range,
this system retains a disordered fluorite crystal structure and the vacancy
concentration is constant. The observed trends of decreasing conductivity and
increasing disorder with increasing Nb5+ content were reproduced in simulations
with the cations randomly assigned to positions on the cation sublattice. The
trends were traced to the influences of the cation charges and relative sizes
and their effect on vacancy ordering by carrying out additional calculations in
which, for example, the charges of the cations were equalised. The simulations
did not, however, reproduce all the observed properties, particularly for
Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse
scattering features observed in small area electron diffraction studies were
not always reproduced. Consideration of these deficiencies led to a preliminary
attempt to characterise the consequence of partially ordering the cations on
their lattice, which significantly affects the propensity for vacancy ordering.
The extent and consequences of cation ordering seem to be much less pronounced
on the Zr2Y2O7 side of the composition range.Comment: 22 pages, 8 figures, submitted to Journal of Physics: Condensed
Matte
The Angular Momentum Evolution of 0.1-10 Msun Stars From the Birthline to the Main Sequence
(Abridged) Projected rotational velocities (vsini) have been measured for a
sample of 145 stars with masses between 0.4 and >10 Msun (median mass 2.1 Msun)
located in the Orion star-forming complex. These measurements have been
supplemented with data from the literature for Orion stars with masses as low
as 0.1 Msun. The primary finding from analysis of these data is that the upper
envelope of the observed values of angular momentum per unit mass (J/M) varies
as M^0.25 for stars on convective tracks having masses in the range ~0.1 to ~3
Msun. This power law extends smoothly into the domain of more massive stars (3
to 10 Msun), which in Orion are already on the ZAMS. This result stands in
sharp contrast to the properties of main sequence stars, which show a break in
the power law and a sharp decline in J/M with decreasing mass for stars with M
<2 Msun. A second result of our study is that this break is seen already among
the PMS stars in our Orion sample that are on radiative tracks, even though
these stars are only a few million years old. A comparison of rotation rates
seen for stars on either side of the convective-radiative boundary shows that
stars do not rotate as solid bodies during the transition from convective to
radiative tracks.Comment: to appear in Ap
The impact of assembly bias on the halo occupation in hydrodynamical simulations
We investigate the variations in galaxy occupancy of the dark matter haloes with the large-scale environment and halo formation time, using two state-of-the-art hydrodynamical cosmological simulations, EAGLE and Illustris. For both simulations, we use three galaxy samples with a fixed number density ranked by stellar mass. For these samples, we find that low-mass haloes in the most dense environments are more likely to host a central galaxy than those in the least dense environments. When splitting the halo population by formation time, these relations are stronger. Hence, at a fixed low halo mass, early-formed haloes are more likely to host a central galaxy than late-formed haloes since they have had more time to assemble. The satellite occupation shows a reverse trend where early-formed haloes host fewer satellites due to having more time to merge with the central galaxy. We also analyse the stellar mass–halo mass relation for central galaxies in terms of the large-scale environment and formation time of the haloes. We find that low-mass haloes in the most dense environment host relatively more massive central galaxies. This trend is also found when splitting the halo population by age, with early-formed haloes hosting more massive galaxies. Our results are in agreement with previous findings from semi-analytical models, providing robust predictions for the occupancy variation signature in the halo occupation distribution of galaxy formation models
Observations on the Formation of Massive Stars by Accretion
Observations of the H66a recombination line from the ionized gas in the
cluster of newly formed massive stars, G10.6-0.4, show that most of the
continuum emission derives from the dense gas in an ionized accretion flow that
forms an ionized disk or torus around a group of stars in the center of the
cluster. The inward motion observed in the accretion flow suggests that despite
the equivalent luminosity and ionizing radiation of several O stars, neither
radiation pressure nor thermal pressure has reversed the accretion flow. The
observations indicate why the radiation pressure of the stars and the thermal
pressure of the HII region are not effective in reversing the accretion flow.
The observed rate of the accretion flow, 0.001 solar masses/yr, is sufficient
to form massive stars within the time scale imposed by their short main
sequence lifetimes. A simple model of disk accretion relates quenched HII
regions, trapped hypercompact HII regions, and photo-evaporating disks in an
evolutionary sequence
- …