36 research outputs found

    Effect of diet versus diet and exercise on weight loss and body composition in class II and III obesity: A systematic review

    Full text link
    Class II and III obesity (BMI >35 kg·m2) have increased dramatically in recent years. Current clinical guidelines suggest diet and exercise as first line treatment for adults throughout the spectrum of overweight and obesity. However, to date there is no systematic review that examines the effects of diet and exercise on this high risk population. This systematic review will examine the combined effects of diet versus diet and exercise on body composition in severe obesity. Medline and Cinahl were searched for randomised controlled trials comparing diet and exercise to diet alone. Studies published until July 2013 were included if they used reliable methods for analysing body composition in adults with BMI ≥ 35 kg·m2. Five of 459 studies met the inclusion criteria. Two studies, both in older adults, reported that exercise reduced lean mass loss during weight loss. Two studies showed that exercise facilitated (greater) fat mass loss. The remaining study reported no differences in body composition when exercise is added to energy restriction. Exercise training during energy restriction for individuals with BMI ≥35 kg.m2 may influence body composition outcomes but the evidence is limited. Further studies should focus on the efficacy of different exercise protocols during energy restriction for this population in order to better inform decision making for the treatment of severe obesity in respect to favourable body composition outcomes

    Change in Sympathetic Nerve Firing Pattern Associated with Dietary Weight Loss in the Metabolic Syndrome

    Get PDF
    Sympathetic activation in subjects with the metabolic syndrome (MS) plays a role in the pathogenesis of cardiovascular disease development. Diet-induced weight loss decreases sympathetic outflow. However the mechanisms that account for sympathetic inhibition are not known. We sought to provide a detailed description of the sympathetic response to diet by analyzing the firing behavior of single-unit sympathetic nerve fibers. Fourteen subjects (57 ± 2 years, nine men, five females) fulfilling ATP III criteria for the MS underwent a 3-month low calorie diet. Metabolic profile, hemodynamic parameters, and multi-unit and single-unit muscle sympathetic nerve activity (MSNA, microneurography) were assessed prior to and at the end of the diet. Patients’ weight dropped from 96 ± 4 to 88 ± 3 kg (P < 0.001). This was associated with a decrease in systolic and diastolic blood pressure (−12 ± 3 and −5 ± 2 mmHg, P < 0.05), and in heart rate (−7 ± 2 bpm, P < 0.01) and an improvement in all metabolic parameters (fasting glucose: −0.302.1 ± 0.118 mmol/l, total cholesterol: −0.564 ± 0.164 mmol/l, triglycerides: −0.414 ± 0.137 mmol/l, P < 0.05). Multi-unit MSNA decreased from 68 ± 4 to 59 ± 5 bursts/100 heartbeats (P < 0.05). Single-unit MSNA indicated that the firing rate of individual vasoconstrictor fibers decreased from 59 ± 10 to 32 ± 4 spikes/100 heart beats (P < 0.05). The probability of firing decreased from 34 ± 5 to 23 ± 3% of heartbeats (P < 0.05), and the incidence of multiple firing decreased from 14 ± 4 to 6 ± 1% of heartbeats (P < 0.05). Cardiac and sympathetic baroreflex function were significantly improved (cardiac slope: 6.57 ± 0.69 to 9.57 ± 1.20 ms·mmHg−1; sympathetic slope: −3.86 ± 0.34 to −5.05 ± 0.47 bursts/100 heartbeats·mmHg−1, P < 0.05 for both). Hypocaloric diet decreased sympathetic activity and improved hemodynamic and metabolic parameters. The sympathoinhibition associated with weight loss involves marked changes, not only in the rate but also in the firing pattern of active vasoconstrictive fibers

    Benefits for Type 2 Diabetes of Interrupting Prolonged Sitting With Brief Bouts of Light Walking or Simple Resistance Activities

    Get PDF
    OBJECTIVE To determine whether interrupting prolonged sitting with brief bouts of light-intensity walking (LW) or simple resistance activities (SRA) improves postprandial cardiometabolic risk markers in adults with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS In a randomized crossover trial, 24 inactive overweight/obese adults with T2D (14 men 62 ± 6 years old) underwent the following 8-h conditions on three separate days (with 6–14 days washout): uninterrupted sitting (control) (SIT), sitting plus 3-min bouts of LW (3.2 km · h−1) every 30 min, and sitting plus 3-min bouts of SRA (half-squats, calf raises, gluteal contractions, and knee raises) every 30 min. Standardized meals were consumed during each condition. Incremental areas under the curve (iAUCs) for glucose, insulin, C-peptide, and triglycerides were compared between conditions. RESULTS Compared with SIT, both activity-break conditions significantly attenuated iAUCs for glucose (SIT mean 24.2 mmol · h · L−1 [95% CI 20.4–28.0] vs. LW 14.8 [11.0–18.6] and SRA 14.7 [10.9–18.5]), insulin (SIT 3,293 pmol · h · L−1 [2,887–3,700] vs. LW 2,104 [1,696–2,511] and SRA 2,066 [1,660–2,473]), and C-peptide (SIT 15,641 pmol · h · L−1 [14,353–16,929] vs. LW 11,504 [10,209–12,799] and SRA 11,012 [9,723–12,301]) (all P < 0.001). The iAUC for triglycerides was significantly attenuated for SRA (P < 0.001) but not for LW (SIT 4.8 mmol · h · L−1 [3.6–6.0] vs. LW 4.0 [2.8–5.1] and SRA 2.9 [1.7–4.1]). CONCLUSIONS Interrupting prolonged sitting with brief bouts of LW or SRA attenuates acute postprandial glucose, insulin, C-peptide, and triglyceride responses in adults with T2D. With poor adherence to structured exercise, this approach is potentially beneficial and practical

    Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes.

    Get PDF
    OBJECTIVE: Prolonged sitting is increasingly recognized as a ubiquitous cardiometabolic risk factor, possibly distinct from lack of physical exercise. We examined whether interrupting prolonged sitting with brief bouts of light-intensity activity reduced blood pressure (BP) and plasma noradrenaline in type 2 diabetes (T2D). METHODS: In a randomized crossover trial, 24 inactive overweight/obese adults with T2D (14 men; mean ± SD; 62 ± 6 years) consumed standardized meals during 3 × 8 h conditions: uninterrupted sitting (SIT); sitting + half-hourly bouts of walking (3.2 km/h for 3-min) (light-intensity walking); and sitting + half-hourly bouts of simple resistance activities for 3 min (SRAs), each separated by 6-14 days washout. Resting seated BP was measured hourly (mean of three recordings, ≥20-min postactivity). Plasma noradrenaline was measured at 30-min intervals for the first hour after meals and hourly thereafter. RESULTS: Compared with SIT, mean resting SBP and DBP were significantly reduced (P < 0.001) for both light-intensity walking (mean ± SEM; -14 ± 1/-8 ± 1 mmHg) and SRA (-16 ± 1/-10 ± 1 mmHg), with a more pronounced effect for SRA (P < 0.05 versus light-intensity walking). Similarly, mean plasma noradrenaline was significantly reduced for both light-intensity walking (-0.3 ± 0.1 nmol/l) and SRA (-0.6 ± 0.1 nmol/l) versus SIT, with SRA lower than light-intensity walking (P < 0.05). Mean resting heart rate was lowered by light-intensity walking (-3 ± 1 bpm; P < 0.05), but not SRA (-1 ± 1 bpm). CONCLUSION: Interrupting prolonged sitting with brief bouts of light-intensity walking or SRA reduces resting BP and plasma noradrenaline in adults with T2D, with SRA being more effective. Given the ubiquity of sedentary behaviors and poor adherence to structured exercise, this approach may have important implications for BP management in patients with T2D

    Plasma lipocalin-2/NGAL is stable over 12 weeks and is not modulated by exercise or dieting

    Get PDF
    Amongst other immune cells, neutrophils play a key role in systemic inflammation leading to cardiovascular disease and can release inflammatory factors, including lipocalin-2 (LCN2). LCN2 drives cardiac hypertrophy and plays a role in maladaptive remodelling of the heart and has been associated with renal injury. While lifestyle factors such as diet and exercise are known to attenuate low-grade inflammation, their ability to modulate plasma LCN2 levels is unknown. Forty-eight endurance athletes and 52 controls (18–55 years) underwent measurement for various cardiovascular health indicators, along with plasma LCN2 concentration. No significant difference in LCN2 concentration was seen between the two groups. LCN2 was a very weak predictor or absent from models describing blood pressures or predicting athlete status. In another cohort, 57 non-diabetic overweight or obese men and post-menopausal women who fulfilled Adult Treatment Panel III metabolic syndrome criteria were randomly allocated into either a control, modified Dietary Approaches to Stop Hypertension (DASH) diet, or DASH and exercise group. Pre- and post-intervention demographic, cardiovascular health indicators, and plasma LCN2 expression were measured in each individual. While BMI fell in intervention groups, LCN2 levels remained unchanged within and between all groups, as illustrated by strong correlations between LCN2 concentrations pre- and 12 weeks post-intervention (r = 0.743, P < 0.0001). This suggests that circulating LCN2 expression are stable over a period of at least 12 weeks and is not modifiable by diet and exercise

    Lipoproteins and cardiovascular reactivity

    No full text
    The observation that relatively short periods of cholesterol lowering therapy can reduce the incidence of coronary artery disease events has prompted interest in the short term effects of lipoproteins on cardiovascular responsiveness. Numerous studies in animals and humans have demonstrated that oxidized LDL-cholesterol can impair endothelial dependent vasodilation in coronary arteries and peripheral resistance vessels. Reduction of plasma LDL-cholesterol levels in hypercholesterolaemic patients improves nitric oxide mediated vasodilator responses in the coronary and peripheral circulation. LDL-cholesterol also potentiates responses to vasoconstrictors such as noradrenaline and endothelin-1 in the absence of endothelium, possibly by enhancing calcium influx into vascular smooth muscle cells. Pharmacological reduction of plasma LDL-cholesterol levels has been shown to reduce blood pressure responses to intravenous infusions of pressor hormones and to stress. However, the relative contribution of changes in endothelial dependent vasodilation and vasoconstrictor or inotropic responses remains to be established. Short term changes in LDL-cholesterol produce changes in cardiovascular responsiveness that may influence the development of ischaemic events

    Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension

    No full text
    Hypertension in normal-weight and obese individuals is characterized by activation of the sympathetic nervous system. Measurement of spillover of the sympathetic transmitter, norepinephrine, to plasma indicates that the regional pattern of sympathetic activation in the 2 “variants” of essential hypertension differs, excluding the heart in obesity-related hypertension. Whether sympathetic nerve firing characteristics also differ is unknown. We studied multiunit and single fiber sympathetic nerve firing properties in patients with normal-weight hypertension and obesity-related hypertension, comparing these with nerve characteristics in normal-weight and obese people with normal blood pressure. Both normal-weight hypertensive (n=10) and obese hypertensive (n=14) patients had increased total multiunit muscle sympathetic nerve activity compared with the normal-weight (n=11) and obese (n=11) people with normal blood pressure (65±4 versus 47±6 bursts per 100 heartbeats, P<0.01 in the normal-weight groups and 68±4 versus 53±3 bursts per 100 beats, P<0.01 in the obese groups). Sympathetic activation in normal-weight hypertension was characterized by increased firing rate of single vasoconstrictor fibers (70±8 versus 28±3 spikes per 100 beats; P<0.001), increased firing probability per heartbeat (39±3% versus 20±3%; P<0.001), and higher incidence of multiple spikes per heartbeat (30±4% versus 17±4%; P<0.05). Sympathetic activation in obesity-related hypertension differed, involving recruitment of previously silent fibers, which fired at a normal rate. The pattern of sympathetic activation in normal-weight and obesity-related hypertension differs in terms of both the firing characteristics of individual sympathetic fibers and the sympathetic outflows involved. The underlying central nervous system mechanism and the adverse consequences of the 2 modes of sympathetic activation may differ
    corecore