31 research outputs found

    Overlapped Sequence Types (sts) And Serogroups Of Avian Pathogenic (apec) And Human Extra-intestinal Pathogenic (expec) Escherichia Coli Isolated In Brazil

    No full text
    Avian pathogenic Escherichia coli (APEC) strains belong to a category that is associated with colibacillosis, a serious illness in the poultry industry worldwide. Additionally, some APEC groups have recently been described as potential zoonotic agents. In this work, we compared APEC strains with extraintestinal pathogenic E. coli (ExPEC) strains isolated from clinical cases of humans with extra-intestinal diseases such as urinary tract infections (UTI) and bacteremia. PCR results showed that genes usually found in the ColV plasmid (tsh, iucA, iss, and hlyF) were associated with APEC strains while fyuA, irp-2, fepC sitDchrom, fimH, crl, csgA, afa, iha, sat, hlyA, hra, cnf1, kpsMTII, clpVSakai and malX were associated with human ExPEC. Both categories shared nine serogroups (O2, O6, O7, O8, O11, O19, O25, O73 and O153) and seven sequence types (ST10, ST88, ST93, ST117, ST131, ST155, ST359, ST648 and ST1011). Interestingly, ST95, which is associated with the zoonotic potential of APEC and is spread in avian E. coli of North America and Europe, was not detected among 76 APEC strains. When the strains were clustered based on the presence of virulence genes, most ExPEC strains (71.7%) were contained in one cluster while most APEC strains (63.2%) segregated to another. In general, the strains showed distinct genetic and fingerprint patterns, but avian and human strains of ST359, or ST23 clonal complex (CC), presented more than 70% of similarity by PFGE. The results demonstrate that some "zoonotic-related" STs (ST117, ST131, ST10CC, ST23CC) are present in Brazil. Also, the presence of moderate fingerprint similarities between ST359 E. coli of avian and human origin indicates that strains of this ST are candidates for having zoonotic potential. © 2014 Maluta et al.98Dziva, F., Stevens, M.P., Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts (2008) Avian Pathology, 37 (4), pp. 355-366. , DOI 10.1080/03079450802216652, PII 794893305Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antao E.-M, Laturnus, C., Wieler, L.H., Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? (2007) International Journal of Medical Microbiology, 297 (3), pp. 163-176. , DOI 10.1016/j.ijmm.2007.01.003, PII S1438422107000173Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon-Grasteau, S., Germon, P., Rasschaert, D., Schouler, C., Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns (2007) Journal of Clinical Microbiology, 45 (10), pp. 3366-3376. , DOI 10.1128/JCM.00037-07Rodriguez-Siek, K.E., Giddings, C.W., Doetkott, C., Johnson, T.J., Fakhr, M.K., Nolan, L.K., Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis (2005) Microbiology, 151 (6), pp. 2097-2110. , DOI 10.1099/mic.0.27499-0Mellata, M., Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends (2013) Foodborne Pathog Dis, 10, pp. 916-932Moreno, E., Andreu, A., Perez, T., Sabate, M., Johnson, J.R., Prats, G., Relationship between Escherichia coli strains causing urinary tract infection in women and the dominant faecal flora of the same hosts (2006) Epidemiology and Infection, 134 (5), pp. 1015-1023. , DOI 10.1017/S0950268806005917, PII S0950268806005917Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y., Yoshida, O., Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli (1997) Journal of Urology, 157 (3), pp. 1127-1129. , DOI 10.1016/S0022-5347(01)65154-1Russo, T.A., Johnson, J.R., Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC (2000) Journal of Infectious Diseases, 181 (5), pp. 1753-1754. , DOI 10.1086/315418Kaper, J.B., Nataro, J.P., Mobley, H.L.T., Pathogenic Escherichia coli (2004) Nature Reviews Microbiology, 2 (2), pp. 123-140. , DOI 10.1038/nrmicro818Johnson, T.J., Wannemuehler, Y., Johnson, S.J., Stell, A.L., Doetkott, C., Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens (2008) Appl Environ Microbiol, 74, pp. 7043-7050Danzeisen, J.L., Wannemuehler, Y., Nolan, L.K., Johnson, T.J., Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection (2013) Avian Dis, 57, pp. 104-108Vincent, C., Boerlin, P., Daignault, D., Dozois, C.M., Dutil, L., Food reservoir for Escherichia coli causing urinary tract infections (2010) Emerg Infect Dis, 16, pp. 88-95Maluta, R.P., Gatti, M.S.V., Joazeiro, P.P., De Paiva, J.B., Rojas, T.C.G., Avian extra-intestinal Escherichia coliexhibits enterotoxigenic-like activity in the in vivo rabbit ligated ileal loop assay (2014) Foodborne Pathogens and Disease, 11, pp. 484-489Arbeit, D.J., Laboratory procedures for the epidemiologic analysis of microorganisms (1995) Manual of Clinical Microbiology. 6th Ed, pp. 190-208. , Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Washington, D.C.: American Society for MicrobiologyOrskov, F., Orskov, I., Serotyping of Escherichia coli (1984) Methods Microbiol, 14, pp. 43-112Machado, J., Grimont, F., Grimont, P.A., Identification of Escherichia coli flagellar types by restriction of the amplified fliC gene (2000) Res Microbiol, 151, pp. 535-546Borges, C.A., Beraldo, L.G., Maluta, R.P., Cardozo, M.V., Guth, B.E.C., Shiga Toxigenic and Atypical Enteropathogenic Escherichia coli in the Feces and Carcasses of Slaughtered Pigs (2012) Foodborne Pathogens and Disease, 9, pp. 1119-1125Clermont, O., Bonacorsi, S., Bingen, E., Rapid and simple determination of the Escherichia coli phylogenetic group (2000) Appl Environ Microbiol, 66, pp. 4555-4558De Hoon, M.J.L., Imoto, S., Nolan, J., Miyano, S., Open source clustering software (2004) Bioinformatics, 20 (9), pp. 1453-1454. , DOI 10.1093/bioinformatics/bth078Saldanha, A.J., Java Treeview-extensible visualization of microarray data (2004) Bioinformatics, 20, pp. 3246-3248Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Sex and virulence in Escherichia coli: An evolutionary perspective (2006) Mol Microbiol, 60, pp. 1136-1151Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10 (3), pp. 512-526Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Smith, J.L., Fratamico, P.M., Gunther, N.W., Extraintestinal pathogenic Escherichia coli (2007) Foodborne Pathogens and Disease, 4 (2), pp. 134-163. , DOI 10.1089/fpd.2007.0087Ginns, C.A., Benham, M.L., Adams, L.M., Whithear, K.G., Bettelheim, K.A., Crabb, B.S., Browning, G.F., Colonization of the respiratory tract by a virulent strain of avian Escherichia coli requires carriage of a conjugative plasmid (2000) Infection and Immunity, 68 (3), pp. 1535-1541. , DOI 10.1128/IAI.68.3.1535-1541.2000Manges, A.R., Johnson, J.R., Food-borne origins of Escherichia coli causing extraintestinal infections (2012) Clin Infect Dis, 55, pp. 712-719Mora, A., LĂłpez, C., Herrera, A., Viso, S., Mamani, R., Emerging avian pathogenic Escherichia coli strains belonging to clonal groups O111:H4-DST2085 and O111:H4-D-ST117 with high virulence-gene content and zoonotic potential (2012) Vet Microbiol, 156, pp. 347-352Dissanayake, D.R., Octavia, S., Lan, R., Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka (2014) Vet Microbiol, 168, pp. 403-412Hussein, A.H., Ghanem, I.A., Eid, A.A., Ali, M.A., Sherwood, J.S., Molecular and phenotypic characterization of Escherichia coli isolated from broiler chicken flocks in Egypt (2013) Avian Dis, 57, pp. 602-611Pires-dos-Santos, T., Bisgaard, M., Christensen, H., Genetic diversity and virulence profiles of Escherichia coli causing salpingitis and peritonitis in broiler breeders (2013) Vet Microbiol, 162, pp. 873-880GiufrĂš, M., Graziani, C., Accogli, M., Luzzi, I., Busani, L., Escherichia coli of human and avian origin: Detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy (2012) J Antimicrob Chemother, 67, pp. 860-867Platell, J.L., Johnson, J.R., Cobbold, R.N., Trott, D.J., Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods (2011) Vet Microbiol, 153, pp. 99-108Rogers, B.A., Sidjabat, H.E., Paterson, D.L., Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain (2011) J Antimicrob Chemother, 66, pp. 1-14Peirano, G., Asensi, M.D., Pitondo-Silva, A., Pitout, J.D., Molecular characteristics of extended-spectrum b-lactamase-producing Escherichia coli from Rio de Janeiro, Brazil (2011) Clin Microbiol Infect, 17, pp. 1039-1043Berman, H., Barberino, M.G., Moreira, E.D., Riley, L., Reis, J.N., Distribution of strain type and antimicrobial susceptibility of Escherichia coli causing meningitis in a large urban setting in Brazil (2014) Journal of Clinical MicrobiologyKawamura, K., Goto, K., Nakane, K., Arakawa, Y., Molecular Epidemiology of Extended-Spectrum ÎČ-Lactamases and Escherichia coli Isolated from Retail Foods Including Chicken Meat in Japan (2014) Foodborne Pathog Dis, 11, pp. 104-110Mora, A., Herrera, A., Mamani, R., LĂłpez, C., Alonso, M.P., Recent Emergence of Clonal Group O25b:K1:H4-B2-ST131 ibeA Strains among Escherichia coli Poultry Isolates, Including CTX-M-9-Producing Strains, and Comparison with Clinical Human Isolates (2010) Applied and Environmental Microbiology, 76, pp. 6991-6997Minarini, L.A.R., Camargo, I.L.B.C., Pitondo-Silva, A., Darini, A.L.C., Multilocus sequence typing of uropathogenic ESBL-producing Escherichia coli isolated in a Brazilian community (2007) Current Microbiology, 55 (6), pp. 524-529. , DOI 10.1007/s00284-007-9026-3Valverde, A., CantĂłn, R., GarcillĂĄn-Barcia, M.P., Novais, Â., GalĂĄn, J.C., Spread of blaCTX-M-14 Is Driven Mainly by IncK Plasmids Disseminated among Escherichia coli Phylogroups A, B1, and D in Spain (2009) Antimicrobial Agents and Chemotherapy, 53, pp. 5204-521

    Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection

    Get PDF
    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus

    Perfil de sensibilidade antimicrobiana e detecção do gene ISS pela reação em cadeia da polimerase na tipificação de Escherichia coli patogĂȘnica em codornas de corte sob inspeção sanitĂĄria Profile of antimicrobial resistance and detection of iss gene by the polymerase chain reaction in the typification of pathogenic Escherichia coli in meat type quails under sanitary inspection

    No full text
    A patogenicidade das cepas de Escherichia coli estĂĄ relacionada Ă  expressĂŁo de fatores de virulĂȘncia encontrados em elementos genĂ©ticos denominados plasmĂ­dios. O patotipo APEC, responsĂĄvel por diferentes tipos de doenças em aves, pode apresentar o gene iss que aumenta a resistĂȘncia das cepas de E. coli aos efeitos lĂ­ticos do soro, alĂ©m da resistĂȘncia a diversos antimicrobianos. Este estudo foi conduzido para detectar E. coli em traquĂ©ias de codornas destinadas ao abate e avaliar, pela presença do gene iss e o perfil de susceptibilidade antimicrobiana, o potencial patogĂȘnico para aves e humanos dos isolados obtidos. Foram coletadas 180 traquĂ©ias de codornas para detecção de E. coli, determinação do perfil de resistĂȘncia a agentes antimicrobianos e posterior detecção, por reação em cadeia da polimerase (PCR), do gene iss. Das traquĂ©ias analisadas, 8,9 % (16/180) foram positivas para E. coli, sendo obtidos 20 isolados deste agente. A maioria dos isolados foi resistente Ă  Tetraciclina (16/20), seguida pela Ceftazidima (13/20) e Ácido NalidĂ­xico (12/20), sendo apenas um resistente Ă  Amoxicilina. A detecção do gene iss ocorreu em 55% (11/20) dos isolados. A presença do gene iss e a resistĂȘncia a mĂșltiplos antimicrobianos dos isolados obtidos neste estudo pode indicar um possĂ­vel potencial patogĂȘnico das cepas de E. coli tanto para codornas quanto para outros tipos de aves e animais e mesmo para o ser humano que fique em contato com as mesmas.<br>The pathogenicity of Escherichia coli strains is partially related to the expression of virulence factors genes, present in genetic elements called plasmids. APEC strains responsible for diseases in birds may present the iss gene which increases the resistance of E. coli strains to the lityc effect of the host's serum, besides resistance to several antimicrobials. This study was conduced in order to detect E. coli in tracheae of meat-type quails and to evaluate, by the presence of the iss gene and the profile of antimicrobial susceptibility, the pathogenic potential of the isolated samples for birds and humans. One hundred and eighty tracheae of quails were collected for detection of E. coli, antimicrobial sensitivity tests, and for polymerase chain reaction (PCR), for detection of iss gene. From the examined quails, 8.9 % (16/180) were positive for E. coli, from which 20 strains of this bacterium were obtained. Most of them were resistant to Tetracycline (16/20), followed by Ceftadizime (13/20) and Nalidixic-acid (12/20) and only one isolate was resistant to Amoxicillin. The detection of iss gene occurred in 55% (11/20) of the isolates, indicating that these strains had the potential to be pathogenic not only for quails, but also for other kinds of birds, other animals and even human beings that would be in contact with these E. coli isolates
    corecore