45 research outputs found
Исследование чувствительности целевого функционала к вариациям проектных параметров ракеты-носителя
Сформулирована задача исследования параметрической чувствительности целевого функционала, характеризующего качество проектирования ракеты-носителя (РН), к отклонениям проектных параметров от номинальных значений. Оценено влияние вариаций проектных параметров на целевой функционал, определены диапазоны, в которых вариации исследуемых параметров не оказывают существенного влияния на эффективность выполнения целевой задачи. Классификация проектных параметров по степени их влияния на целевой функционал может быть использована при разработке эффективных методов оптимизации для решения задач начального этапа проектирования РН.Сформульовано завдання дослідження параметричної чутливості цільового функціонала, який характеризує якість проектування ракети-носія (РН), щодо відхилень проектних параметрів від номінальних значень. Оцінено вплив варіацій проектних параметрів на цільовий функціонал, визначені діапазони, у яких варіації параметрів, що досліджуються, роблять істотний вплив на ефективність виконання цільового завдання. Класифікація проектних параметрів в залежності від їхнього впливу на цільовий функціонал може бути використана при розробці ефективних методів оптимізації для рішення завдань початкового етапу проектування РН.The problem of studies on a parametric sensitivity of the criterion functional characterizing the design quality of the launch vehicle (LV) to project parameters deviation from nominal values is formulated. The influence of design parameters variations on the criterion functional is evaluated. Ranges in which variations in parameters under consideration do not exert considerable influence on the efficiency of the desired problem realization are determined. Classification of design parameters according to their influence on the criterion functional can be used to develop efficient methods of optimization for solution of problems of an initial phase of the LV design
Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean.
International audience: Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007--2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean
Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus
Publisher Copyright: © 2021 Grau-Bové et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.publishersversionpublishe
Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii
Mosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with a high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high-quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analyzed whole genomes of 1142 individual mosquitoes sampled from the wild in 13 African countries, as well as a further 234 individuals comprising parents and progeny of 11 laboratory crosses. The data resource includes high-confidence single-nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We use these data to analyze genetic population structure and characterize genetic diversity within and between populations. We illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance and for accelerating research and development of new vector control tools. It also provides a unique resource for the study of population genomics and evolutionary biology in eukaryotic species with high levels of genetic diversity under strong anthropogenic evolutionary pressures
Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus
Vector population control using insecticides is a key element of current strategies to prevent
malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate
pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance
driven by the highly diverse Anopheles genomes. Here, we use a population genomic
approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors
Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single
non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key
resistance diagnostic in an A. coluzzii population from Coˆte d’Ivoire that we used for
sequence-based association mapping, with replication in other West African populations.
The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved
in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily
due to selection imposed by other organophosphate or carbamate insecticides. Our findings
highlight the predictive value of this complex resistance haplotype for phenotypic resistance
and clarify its evolutionary history, providing tools to for molecular surveillance of the current
and future effectiveness of pirimiphos-methyl based interventions
Delineation of the population genetic structure of Culicoides imicola in East and South Africa
BACKGROUND: Culicoides imicola Kieffer, 1913 is the main vector of bluetongue virus (BTV) and African horse sickness virus (AHSV) in Sub-Saharan Africa. Understanding the population genetic structure of this midge and the nature of barriers to gene flow will lead to a deeper understanding of bluetongue epidemiology and more effective vector control in this region. METHODS: A panel of 12 DNA microsatellite markers isolated de novo and mitochondrial DNA were utilized in a study of C. imicola populations from Africa and an outlier population from the Balearic Islands. The DNA microsatellite markers and mitochondrial DNA were also used to examine a population of closely related C. bolitinos Meiswinkel midges. RESULTS: The microsatellite data suggest gene flow between Kenya and south-west Indian Ocean Islands exist while a restricted gene flow between Kenya and South Africa C. imicola populations occurs. Genetic distance correlated with geographic distance by Mantel test. The mitochondrial DNA analysis results imply that the C. imicola populations from Kenya and south-west Indian Ocean Islands (Madagascar and Mauritius) shared haplotypes while C. imicola population from South Africa possessed private haplotypes and the highest nucleotide diversity among the African populations. The Bayesian skyline plot suggested a population growth. CONCLUSIONS: The gene flow demonstrated by this study indicates a potential risk of introduction of new BTV serotypes by wind-borne infected Culicoides into the Islands. Genetic similarity between Mauritius and South Africa may be due to translocation as a result of human-induced activities; this could impact negatively on the livestock industry. The microsatellite markers isolated in this study may be utilised to study C. bolitinos, an important vector of BTV and AHSV in Africa and identify sources of future incursions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-1277-4) contains supplementary material, which is available to authorized users
Nouvelle approche de la lutte contre les maladies transmissibles: etude de l'effet de certains pyrethrinoiedes et d'un inhibiteur de croisance sur le cycle sporogonique de Plasmodium yoelii yoelii et sur le developpement de Dipetalonema dessetae dans leurs vecteurs
SIGLEINIST T 71483 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
Xenopsylla cheopis (Siphonaptera: Pulicidae) susceptibility to Deltamethrin in Madagascar.
The incidence of bubonic plague in Madagascar is high. This study reports the susceptibility of 32 different populations of a vector, the flea Xenopsylla cheopis (Siphonaptera: Pulicidae), to the insecticide Deltamethrin. Despite the use of Deltamethrin against fleas, plague epidemics have re-emerged in Madagascar. The majority of the study sites were located in the Malagasy highlands where most plague cases have occurred over the last 10 years. X. cheopis fleas were tested for susceptibility to Deltamethrin (0.05%): only two populations were susceptible to Deltamethrin, four populations were tolerant and 26 populations were resistant. KD50 (50% Knock-Down) and KD90 (90% Knock-Down) times were determined, and differed substantially from 9.4 to 592.4 minutes for KD50 and 10.4 min to 854.3 minutes for KD90. Susceptibility was correlated with latitude, but not with longitude, history of insecticide use nor date of sampling. Combined with the number of bubonic plague cases, our results suggest that an immediate switch to an insecticide other than Deltamethrin is required for plague vector control in Madagascar
Deltamethrin mortality of flea populations sampling in Madagascar.
<p>Green bars represent sensitive populations, orange bars tolerant populations and red bars resistant populations (WHO definition).</p