1,011 research outputs found

    Dirac's hole theory versus quantum field theory

    Get PDF
    Dirac's hole theory and quantum field theory are usually considered equivalent to each other. For models of a certain type, however, the equivalence may not hold as we discuss in this Letter. This problem is closely related to the validity of the Pauli principle in intermediate states of perturbation theory.Comment: No figure

    Validity of Feynman's prescription of disregarding the Pauli principle in intermediate states

    Get PDF
    Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingeneous trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription

    Two definitions of the electric polarizability of a bound system in relativistic quantum theory

    Get PDF
    For the electric polarizability of a bound system in relativistic quantum theory, there are two definitions that have appeared in the literature. They differ depending on whether or not the vacuum background is included in the system. A recent confusion in this connection is clarified

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Approximate Particle Number Projection for Rotating Nuclei

    Get PDF
    Pairing correlations in rotating nuclei are discussed within the Lipkin-Nogami method. The accuracy of the method is tested for the Krumlinde-Szyma\'nski R(5) model. The results of calculations are compared with those obtained from the standard mean field theory and particle-number projection method, and with exact solutions.Comment: 15 pages, 6 figures available on request, REVTEX3.

    Relativistic confinement of neutral fermions with a trigonometric tangent potential

    Get PDF
    The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E=±mc2E=\pm mc^{2}, the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (tanγx\sim \mathrm{tan} \gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.Comment: 12 page

    Nonlinear Conduction by Melting of Stripe-Type Charge Order in Organic Conductors with Triangular Lattices

    Full text link
    We theoretically discuss the mechanism for the peculiar nonlinear conduction in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2X [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] through the melting of stripe-type charge order. An extended Peierls-Hubbard model attached to metallic electrodes is investigated by a nonequilibrium Green's function technique. A novel current-voltage characteristic appears in a coexistent state of stripe-type and nonstripe 3-fold charge orders, where the applied bias melts mainly the stripe-type charge order through the reduction of lattice distortion, whereas the 3-fold charge order survives. These contrastive responses of the two different charge orders are consistent with the experimental observations.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Approximate particle number projection for finite range density dependent forces

    Get PDF
    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei 164^{164}Er and 168^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles. Submitted to Phys. Rev. Let

    Dynamics of bright matter wave solitons in a quasi 1D Bose-Einstein condensate with a rapidly varying trap

    Full text link
    The dynamics of a bright matter wave soliton in a quasi 1D Bose-Einstein condensate with periodically rapidly varying trap is considered. The governing equation is derived based on averaging over fast modulations of the Gross-Pitaevskii (GP) equation. This equation has the form of GP equation with effective potential of more complicated structure than unperturbed trap. For the case of inverted (expulsive) quadratic trap corresponding to unstable GP equation, the effective potential can be stable. For the bounded in space trap potential it is showed that the bifurcation exists, i.e.,the single well potential bifurcates to the triple well effective potential. Stabilization of BEC cloud on-site state in the temporary modulated optical lattice is found. (analogous to the Kapitza stabilization of the pendulum). The predictions of the averaged GP equation are confirmed by the numerical simulations of GP equation with rapid perturbations.Comment: 15 pages, 4 figure
    corecore