79 research outputs found

    Pseudomyxoma-type Invasion in Gastrointestinal Adenocarcinomas of Endometrium and Cervix: A Report of 2 Cases

    Get PDF
    Summary: This paper presents a clinicopathologic and immunohistochemical report of 2 gastrointestinal-type tumors, one in the endometrium and the other in the cervix. Both showed extensive invasion into the pelvic structures with acellular mucin, identical to pseudomyxoma but in the absence of appendiceal or ovarian tumors. Case 1 was an 81- yr-old female with a Stage III endometrial gastrointestinal-type adenocarcinoma who had had an endometrial polyp with intestinal metaplasia 4 yr previously. Case 2 was a 68-yr-old female with Stage IIIB endocervical gastrointestinal-type adenocarcinoma. Both were associated with a pseudomyxoma type of invasion, which in the endometrial case was transmural through the myometrium, and in the cervical case involved parametria, pelvic floor, and lymph nodes. Immunohistochemically, both tumors had a gastrointestinal phenotype coexpressing cytokeratins 7 and 20, CDX2, villin, MUC2, MUC5AC, and MUC6 and were negative for human papillomavirus, analyzed by realtime polymerase chain reaction. The first case exemplifies intestinal endometrial metaplasia as a precursor lesion of the rare gastrointestinal type of adenocarcinoma and also proves its progression into carcinoma. The second case exemplifies the highly aggressive nature of cervical invasion forming mucin lakes. Extensive pseudomyxoma in the uterus and cervix was associated with high clinical stages with marked lymphovascular invasion and lymph node metastase

    Familial clustering of Leiomyomatosis peritonealis disseminata: an unknown genetic syndrome?

    Get PDF
    BACKGROUND: Leiomyomatosis peritonealis disseminata (LPD) is defined as the occurrence of multiple tumorous intraabdominal lesions, which are myomatous nodules. LPD is a rare disease with only about 100 cases reported. The usual course of LPD is benign with the majority of the patients being premenopausal females. Only two cases involving men have been reported, no syndrome or familial occurrence of LPD has been described. CASE PRESENTATION: We describe a Caucasian-American family in which six members (three men) are diagnosed with Leiomyomatosis peritonealis disseminata (LPD) and three deceased family members most likely had LPD (based on the autopsy reports). Furthermore we describe the association of LPD with Raynaud's syndrome and Prurigo nodularis. CONCLUSION: Familial clustering of Leiomyomatosis peritonealis disseminata (LPD) has not been reported so far. The etiology of LPD is unknown and no mode of inheritance is known. We discuss possible modes of inheritance in the presented case, taking into account the possibility of a genetic syndrome. Given the similarity to other genetic syndromes with leiomyomatosis and skin alterations, we describe possible similar genetic pathomechanisms

    E-cadherin expression and bromodeoxyuridine incorporation during development of ovarian inclusion cysts in age-matched breeder and incessantly ovulated CD-1 mice

    Get PDF
    BACKGROUND: Female CD-1/Swiss Webster mice subjected to incessant ovulation for 8 months and 12-month breeder mice both developed ovarian inclusion cysts similar to serous cystadenomas. The majority of cysts appeared to be dilated rete ovarii tubules, but high ovulation number resulted in more cortical inclusion cysts. We hypothesized that comparison of inclusion cyst pathology in animals of the same age, but with differences in total lifetime ovulation number, might allow us to determine distinguishing characteristics of the two types of cyst. METHODS: Ovaries from breeder mice (BR) or females subjected to incessant ovulation (IO) were compared at 6-, 9- and 12-months of age. Ovaries were serially sectioned and cysts characterized with regard to location and histology, E-cadherin immunoreactivity and rates of BrdU incorporation. RESULTS: Inclusion cysts developed with age in BR and IO ovaries. The majority of cysts were connected to the ovarian hilus. Two cortical inclusion cysts were observed in ten IO ovaries and one in ten BR ovaries. Low or no E-cadherin immuno-staining was seen in the OSE of all mice studied. Conversely, strong membrane immuno-staining was observed in rete ovarii epithelial cells. Variable E-cadherin immunoreactivity was seen in cells of hilar inclusion cysts, with strong staining observed in cuboidal ciliated cells and little or no staining in flat epithelial cells. Two of the three cortical cysts contained papillae, which showed E-cadherin immuno-staining at the edge of cells. However hilar and cortical cysts were not distinguishable by morphology, cell type or E-cadherin immunoreactivity. BrdU incorporation in cyst cells (1.4% [95% CI: 1.0 to 2.1]) was greater than in OSE (0.7% [95% CI: 0.4 to 1.2]) and very few BrdU-labeled cells were observed in rete ovarii at any age. Incessant ovulation significantly increased BrdU incorporation in OSE of older animals. CONCLUSION: These experiments confirm ovarian inclusion cysts develop with age in the CD-1 mouse strain, irrespective of total ovulation burden. We conclude longer periods of incessant ovulation do not lead to significant changes in inclusion cyst formation or steroidogenesis in CD-1 mice and inclusion cyst type can not be distinguished by morphology, cell proliferation rate or E-cadherin immunoreactivity

    Monitoring of microbial hydrocarbon remediation in the soil

    Get PDF
    Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review

    A dislike for endometrioid-like

    No full text
    corecore