35 research outputs found
Search for new loci and low-frequency variants influencing glioma risk by exome-array analysis
To identify protein-altering variants (PAVs) for glioma, we analysed Illumina HumanExome BeadChip exome-array data on 1882 glioma cases and 8079 controls from three independent European populations. In addition to single-variant tests we incorporated information on the predicted functional consequences of PAVs and analysed sets of genes with a higher likelihood of having a role in glioma on the basis of the profile of somatic mutations documented by large-scale sequencing initiatives. Globally there was a strong relationship between effect size and PAVs predicted to be damaging (P=2.29 × 10−49); however, these variants which are most likely to impact on risk, are rare (MAFT, p.(Lys3326Ter), which has been shown to influence breast and lung cancer risk (odds ratio (OR)=2.3, P=4.00 × 10−4 for glioblastoma (GBM)) and IDH2:c.782G>A, p.(Arg261His) (OR=3.21, P=7.67 × 10−3, for non-GBM). Additionally, gene burden tests revealed a statistically significant association for HARS2 and risk of GBM (P=2.20 × 10−6). Genome scans of low-frequency PAVs represent a complementary strategy to identify disease-causing variants compared with scans based on tagSNPs. Strategies to lessen the multiple testing burden by restricting analysis to PAVs with higher priors affords an opportunity to maximise study power
Search for AL amyloidosis risk factors using Mendelian randomization
In amyloid light chain (AL) amyloidosis, amyloid fibrils derived from immunoglobulin light chain are deposited in many organs, interfering with their function. The etiology of AL amyloidosis is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited by Mendelian randomization (MR) methodology to search for factors influencing AL amyloidosis risk. We performed a 2-sample MR analyzing 72 phenotypes, proxied by 3461 genetic variants, and summary genetic data from a GWAS of 1129 AL amyloidosis cases and 7589 controls. Associations with a Bonferroni-defined significance level were observed for genetically predicted increased monocyte counts (P = 3.8 × 10−4) and the tumor necrosis factor receptor superfamily member 17 (TNFRSF17) gene (P = 3.4 × 10−5). Two other associations with the TNFRSF (members 6 and 19L) reached a nominal significance level. The association between genetically predicted decreased fibrinogen levels may be related to roles of fibrinogen other than blood clotting. be related to its nonhemostatic role. It is plausible that a causal relationship with monocyte concentration could be explained by selection of a light chain–producing clone during progression of monoclonal gammopathy of unknown significance toward AL amyloidosis. Because TNFRSF proteins have key functions in lymphocyte biology, it is entirely plausible that they offer a potential link to AL amyloidosis pathophysiology. Our study provides insight into AL amyloidosis etiology, suggesting high circulating levels of monocytes and TNFRSF proteins as risk factors
Genetic effects influencing risk for major depressive disorder in China and Europe
Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (similar to 30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log10 Bayes Factor = 8.08) but failed to replicate in an independent European sample (P= 0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies
Genome-wide Association Study of Borderline Personality Disorder Reveals Genetic Overlap with Bipolar Disorder, Major Depression and Schizophrenia
Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57 [P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies
Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology
The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies
Th17-skewed immune response and cluster of differentiation 40 ligand expression in canine steroid-responsive meningitis-arteritis, a large animal model for neutrophilic meningitis
Background: Steroid-responsive meningitis-arteritis (SRMA) is an immune-mediated disorder characterized by neutrophilic pleocytosis and an arteritis particularly in the cervical leptomeninges. Previous studies of the disease have shown increased levels of IL-6 and TGF-beta(1) in cerebrospinal fluid (CSF). In the presence of these cytokines, naive CD4+ cells differentiate into Th17 lymphocytes which synthesize interleukin 17 (IL-17). It has been shown that IL-17 plays an active role in autoimmune diseases, it induces and mediates inflammatory responses and has an important role in recruitment of neutrophils. The hypothesis of a Th17-skewed immune response in SRMA should be supported by evaluating IL-17 and CD40L, inducing the vasculitis. Methods: An enzyme-linked immunosorbent assay (ELISA) was performed to measure IL-17 and CD40L in serum and CSF from a total of 79 dogs. Measurements of patients suffering from SRMA in the acute state (SRMA A) were compared with levels of patients under treatment with steroids (SRMA T), recurrence of the disease (SRMA R), other neurological disorders, and healthy dogs, using the two-part test. Additionally, secretion of IL-17 and interferon gamma (IFN-gamma) from the peripheral blood mononuclear cells (PBMCs) was confirmed by an enzyme-linked immunospot (ELISpot) assay. Results: Significant higher levels of IL-17 were found in CSF of dogs with SRMA A compared with SRMA T, other neurological disorders and healthy dogs (p < 0.0001). In addition, levels of CD40L in CSF in dogs with SRMA A and SRMA R were significantly higher than in those with SRMA T (p = 0.0004) and healthy controls (p = 0.014). Furthermore, CSF concentrations of IL-17 and CD40L showed a strong positive correlation among each other (rSpear = 0.6601;p < 0.0001) and with the degree of pleocytosis (rSpear = 0.8842;p < 0.0001 and rSpear = 0.6649;p < 0.0001, respectively). IL-17 synthesis from PBMCs in SRMA patients was confirmed;however, IL-17 is mainly intrathecally produced. Conclusions: These results imply that Th17 cells are inducing the autoimmune response in SRMA and are involved in the severe neutrophilic pleocytosis and disruption of the blood-brain barrier (BBB). CD-40L intrathecal synthesis might be involved in the striking vasculitis. The investigation of the role of IL-17 in SRMA might elucidate important pathomechanism and open new therapeutic strategies
Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma
Correction to: Nature Communications; https://doi.org/10.1038/s41467-018-04989-w, published online 13 September 2018
Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies
The epilepsies affect around 65 million people worldwide and have a substantial missing
heritability component. We report a genome-wide mega-analysis involving 15,212 individuals
with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11
are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at
these loci, with the majority in genetic generalized epilepsies. These genes have diverse
biological functions, including coding for ion-channel subunits, transcription factors and a
vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants
associated with epilepsy play a role in epigenetic regulation of gene expression in the brain.
The results show an enrichment for monogenic epilepsy genes as well as known targets of
antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and
overlapping genetic basis to seven different epilepsy subtypes. Together, these findings
provide leads for epilepsy therapies based on underlying pathophysiology
Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease ris
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (?genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits