4,776 research outputs found

    Internal magnetic field effect on magnetoelectricity in orthorhombic RMnO3RMnO_3 crystals

    Full text link
    We have investigated the role of the 4ff moment on the magnetoelectric (ME) effect of orthorhombic RRMnO3_{3} (RR=rare earth ions). In order to clarify the role of the 4ff moment, we prepared three samples: (Eu,Y)MnO3_{3} without the 4ff moment, TbMnO3_{3} with the anisotropic 4ff moment, and (Gd,Y)MnO3_{3} with the isotropic 4ff moment. The ferroelectric behaviors of these samples are different from each other in a zero magnetic field. (Eu,Y)MnO3_{3} and (Gd,Y)MnO3_{3} show the ferroelectric polarization along the a axis in the ground state, while TbMnO3_{3} shows it along the c axis. Such difference may arise from the influence of the anisotropic Tb3+^{3+} 4ff moment. The direction of the ferroelectric polarization of RRMnO3_{3} is determined by the internal magnetic field arising from the 4ff moment.Comment: 2 pages, 1 figure, the proceeding of International Conference of Magnetism, to be published in the Journal of Magnetism and Magnetic Material

    Improved detection of nitric oxide radical (NO•) production in an activated macrophage culture with a radical scavenger, car☐y PTIO, and Griess reagent

    Get PDF
    AbstractAn improved method for the detection of nitric oxide radicals (NO•in cultures of activated macrophages was developed, involving a nitric oxide radical scavenger, 2-(4-car☐yphenyl)-4, 4, 5, 5-tetramethylimidazoline-3-oxide-l-oxyl (car☐y PTIO) and Griess reagent. A murine macrophage-like cell line, J774.1, was activated with interferon-γ (IFN-γ) and bacterial lipopolysaccharide (LPS), which induced the production and secretion of NO2− into the culture supernatant. Addition of car☐y PTIO to the activated macrophages increased the amount of NO2−1 to 4- to 5-fold without cell damages, probably because car☐y PTIO rapidly reacted with NO• to form NO2−1 which was finally assayed by the Griess reaction

    Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas

    Get PDF
    Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.

    Theory of magnetic field-induced metaelectric critical end point in BiMn2_2O5_5

    Full text link
    A recent experiment on the multiferroic BiMn2_2O5_5 compound under a strong applied magnetic field revealed a rich phase diagram driven by the coupling of magnetic and charge (dipolar) degrees of freedom. Based on the exchange-striction mechanism, we propose here a theoretical model with the intent to capture the interplay of the spin and dipolar moments in the presence of a magnetic field in BiMn2_2O5_5. Experimentally observed behavior of the dielectric constants, magnetic susceptibility, and the polarization is, for the most part, reproduced by our model. The critical behavior observed near the polarization reversal (P=0)(P=0) point in the phase diagram is interpreted as arising from the proximity to the critical end point.Comment: Theory; relevant experiment uploaded as arXiv:0810.190

    Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster?

    Get PDF
    Hidden from optical view in the starburst region of the dwarf galaxy NGC 5253 lies an intense radio source with an unusual spectrum which could be interpreted variously as nebular gas ionized by a young stellar cluster or nonthermal emission from a radio supernova or an AGN. We have obtained 11.7 and 18.7 micron images of this region at the Keck Telescope and find that it is an extremely strong mid-infrared emitter. The infrared to radio flux ratio rules out a supernova and is consistent with an HII region excited by a dense cluster of young stars. This "super nebula" provides at least 15% of the total bolometric luminosity of the galaxy. Its excitation requires 10^5-10^6 stars, giving it the total mass and size (1-2 pc diameter) of a globular cluster. However, its high obscuration, small size, and high gas density all argue that it is very young, no more than a few hundred thousand years old. This may be the youngest globular cluster yet observed.Comment: 6 pages, 2 color figures, Submitted to the ApJL, Revised 4/6/01 based on referee's comment

    Counting RNAseq reads: which way is better?

    Get PDF
    In this work we show the variation of results we?ve found while working with ~1 billion Illumina reads from drought tolerant Sorghum bicolor genotype in the presence and absence of the stress and compared results found for key genes already characterized.Pôster N101

    Photonic stop bands in quasi-random nanoporous anodic alumina structures

    Full text link
    The existence of photonic stop bands in the self-assembled arrangement of pores in porous anodic alumina structures is investigated by means of rigorous 2D finite- difference time-domain calculations. Self-assembled porous anodic alumina shows a random distribution of domains, each of them with a very definite triangular pattern, constituting a quasi-random structure. The observed stop bands are similar to those of photonic quasicrystals or random structures. As the pores of nanoporous anodic alumina can be infiltrated with noble metals, nonlinear or active media, it makes this material very attractive and cost-effective for applications including inhibition of spontaneous emission, random lasing, LEDs and biosensors

    Reactive Hall response

    Full text link
    The zero temperature Hall constant R_H, described by reactive (nondissipative) conductivities, is analyzed within linear response theory. It is found that in a certain limit, R_H is directly related to the density dependence of the Drude weight implying a simple picture for the change of sign of charge carriers in the vicinity of a Mott-Hubbard transition. This novel formulation is applied to the calculation of R_H in quasi-one dimensional and ladder prototype interacting electron systems.Comment: 4 pages, 3 Postscript figure
    corecore